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Abstract

In this paper, I ask the following two questions: (i) How important are wage and employment

transition data for recovering reliable estimates of the worker ability and worker-firm productivity

distributions? (ii) How can we measure the sensitivity of estimated structural parameters to

calibrated parameters? Using a search model with on-the-job training as in Flinn, Gemici &

Laufer (2017) I find that data characterising the wage distribution of job-movers is relatively

more important for recovering precise estimates.

1 Introduction

This paper asks the following two questions: (i) what is the relative importance of data characterising

the wage distribution to data characterising employment transitions for recovering precise estimates of

the worker-firm and worker ability distributions? (ii) how sensitive are estimated structural parameters

and counterfactual policies to calibrated parameters? Using a search and bargaining model that

allows for human capital accumulation on-the-job, I try to understand the sensitivity of estimates

to different moments and find that absent worker-firm productivity data, moments characterising

the wage distribution of job-movers are important for recovering reliable estimates. The challenge

of identifying parameters of a distribution within search models in the absence of such data is not

uncommon. For example, Karahan, Ozkan, and Song (2019) study the importance of lifetime earnings

growth on lifetime inequality in the U.S within a search and bargaining model with OTJ search and

heterogeneity in worker ability. In their estimation, a key challenge is identifying the distribution of

firm productivity using moments related to the wage growth distribution and employment transitions

over the life-cycle. While there have been suggestions for dealing with this problem such as Bagger

and Lentz (2019) who propose using poaching patterns between firms to rank them with respect to

their productivity, the problem tackled in this paper does not feature firm productivity but instead is
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concerned with the joint worker-firm match productivity. The model is found in Flinn, Gemici, and

Laufer (2017), hereafter FGL. Unique to their paper, the authors use job training data to facilitate

estimation of the worker-firm and worker ability distributions and conclude that employment transition

data alone is not sufficient for recovering these parameters, but that one requires data related to the

distribution of wages both within and across job spells.

Within the econometrics literature, there has been a series of efforts to better understand sensitivity

of parameter estimates within dynamic structural models using moments-based estimation. Andrews,

Gentzkow, and Shapiro (2017) study asymptotic bias in the presence of misspecified moments, while

Honoré, Jørgensen, and de Paula (2020) study the effect on asymptotic variance to included moments.

As interest is often in counterfactual policy, sensitivity of such results has also been of concern.

Christensen and Connault (2019) study sensitivity to assumptions on unobserved distributions, while

Jørgensen (2020) studies the effect of parameters fixed in estimation. Employing some of the methods

developed in this literature may help in solving problems for users of these structural models, such as

those mentioned in the previous paragraph.

Section 2, outlines the partial equilibrium model of FGL (2017). Section 3 briefly describes the data

used in estimating the model. Section 4 discusses estimation and model fit to the data and proximity

to the results presented in FGL (2017). In Section 5, I discuss two sensitivity measures that might shed

light on which moments are most informative in estimation, and hence whether the authors’ claims

are verified. Section 6 considers sensitivity of the structural parameter estimates and a minimum wage

policy to the calibrated bargaining power parameter, and Section 7 concludes.

2 Model

The model is set in continuous time. Individuals are characterized in terms of a (general) ability level

a, with which they enter the labor market:

0 < a1 < ... < aM .

When an individual of type ai encounters a firm, he draws a value θ from the discrete distribution

over the K values of match productivity θ given by

0 < θ1 < ... < θK .

Denote the cdf of θ by G and define pj := Pr(θ = θj). The flow productivity of a match is

y(i, j) = aiθj .

Both general ability and match productivity can be changed through investment on the job. Indeed,

training times allocated to general training, τa, and match-specific training, τθ, is determined coop-
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eratively using a Nash bargaining process. The only cost of either type of training is time, so total

productivity is

(1− τa − τθ)y(i, j).

The production technology for increasing general productivity is

ϕa(i, τa) = δ0
a × a

δ1a
i × (τa)δ

2
a

and it is assumed that ϕa(M, τa) = 0 for all τa so that an individual of the highest ability cannot

experience further increase. Similarly, we have

ϕθ(j, τθ) = δ0
θ × θ

δ1θ
j × (τθ)

δ2θ

with ϕθ(K, τθ) = 0, ∀τθ. An individual may also experience skill depreciation: when i > 1, he is

subject to Poisson shocks that arrive at exogenous rate ϕ̃−a . When such a shock arrives, his new skill

level is ai−1. Similarly, when j > 1 he is subject to ϕ̃−θ and his new skill level is reduced to θj−1.

2.1 Bargaining problem

The model allows for on-the-job search and it is assumed that there are no opportunties for the worker

and firm to renegotiate the employment contract once an outside offer is received. That is, the outside

option for the worker is always unemployment. This gives

max
w,τa,τθ

(
ṼE(i, j;w, τa, τθ)− VU (i)

)α (
ṼF (i, j;w, τa, τθ)− 0

)
s.t. τa + τθ ≤ 1.

(1)

It is also assumed the value to the firm of an unfilled vacancy is 0. The value to an employed worker

with contract (w, τa, τθ) given state variables (ai, θj) is

ṼE(i, j;w, τa, τθ) =
NE(w, τa, τθ; i, j)

D(τa, τθ; i, j)
(2)

where

NE(w, τa, τθ; i, j) = w + λE
∑
s=j+1

psVE(i, s)

+ ϕa(i, τa)Q(i+ 1, j) + ϕθ(j, τθ)VE(i, j + 1)

+ ϕ̃−a Q(i− 1, j) + ϕ̃−θ Q(i, j − 1)

+ ηVU (i)

(3)

and

D(τa, τθ; i, j) = ρ+ λEG̃(θj) + ϕa(i, τa) + ϕθ(j, τθ) + ϕ̃−a + ϕ̃−θ + η. (4)
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with G̃(θj) = 1−G(θj). The term Q(i+ 1, j) = max{VE(i+ 1, j), VU (i+ 1)} and reflects the fact that

at a higher level of a, ai+1, the match value θj may no longer be in the acceptance set of employment

contracts, in which case the worker becomes an unemployed searcher. There may also be endogenous

separation as reflected by Q(i, j−1). Finally, the match can also be terminated at the exogenous rate

η.

The value to the firm conditional on the wage and investment decisions is given by

ṼF (i, j;w, τa, τθ) =
NF (w, τa, τθ; i, j)

D(τa, τθ; i, j)
, (5)

where

NF (w, τa, τθ; i, j) = (1− τa − τθ)y(i, j)− w + ϕa(i, τa)QF (i+ 1, j)

+ ϕθ(j, τθ)VF (i, j + 1)

+ ϕ̃−a QF (i− 1, j)

+ ϕ̃−θ QF (i, j − 1),

(6)

with QF (i+ 1, j) = VF (i+ 1, j) if VE(i+ 1, j) > VU (i+ 1) and equals 0 otherwise, and QF (i, j − 1) =

VF (i, j − 1) if j − 1 > r∗(i) where r∗(i) is the reservation match value for a worker of ability ai.

Finally, the value of unemployed search is

VU (i) =
bai + λU

∑
j=r∗(i)+1 pjVE(i, j)

ρ+ λU G̃(θr∗i )
(7)

where bai is the flow value of unemployment to an individual of type ai.

3 Data

I use the same data and sample FGL use in estimation: a sub-sample of the National Longitudinal

Survey of Youth 1997 (NLSY97). The sample consists of males between ages 26-32 in the latest 2011

survey round who have completed schooling. There is an unbalanced panel of 1,994 individuals and

742,528 person-week observations. The proportion of high school graduates is 37 percent, while the

proportion of those with some college and those with a college degree are 30 and 33 percent respec-

tively.

While weekly employment and training information is used, wage observations are taken from respon-

dents’ reported current wage at the time of the interview. Finally, the training data used is taken from

the NLSY97 training roster where respondents are asked about what types of training they receive

over the survey year and about the start and end dates of training periods by source of training.

However, FGL (2017) do not make assumptions about the type of human capital acquired.
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4 Estimation

4.1 Implementation

To remain close to the authors, I set M = K = 24 and make the support of the distributions for a

and θ identical. The grid points are spaced logarithmically from 2.5 standard deviations below the

mean to 3.5 standard deviations above, and at my estimates shown below, moving up one grid point

corresponds to a 7 percent increase in productivity. I also allow training times to be chosen from a

grid with 26 points.

Furthermore, workers in the model almost always spend some fraction of their time training, which

is not the case in the data. To relate the two measures, I also assume that a worker who spends a

fraction of time τ engaged in training is observed to receive training in that period with probability

Pr(Training observed|τ) = Φ(β0 + β1τ) (8)

where Φ is the cdf for the normal distribution and τ = τavea + τaveθ is the average fraction of time

spent training in a 13-week window or over the entire job spell if it lasts less than 13 weeks.

As in FGL (2017), there are 23 parameters, of which 19 are estimated and 4 are fixed in estimation.

The latter include the bargaining parameter α which is set to 0.5, and the standard deviation of log

wage measurement error, σw set to 0.15. All rate parameters are expressed at a weekly frequency,

with ρ = 0.00203 which accounts for both a time discount rate of four percent and a death shock that

produces an average career length of 45 years. Finally, β1 is set to 1.

4.2 Identification

Estimation of the 19 remaining parameters is achieved by Simulated Method of Moments (SMM). I

use a total of 235 moments and to stay close to the authors, almost all of the moments are employed

in FGL (2017). Some of these moments are listed in Appendix A. We can think of identification as

containing two parts: The first is based on proving the moments used in estimation allow recovery

of the parameters of interest 1. Given the overlap between the moments I’ve chosen and those of

the authors, I will forgo this part. The second is more practical. Indeed, because the problem of

identification of the parametric structural model is also very much a numerical and data-driven issue,

I try to build some confidence in the estimates reported in Table 1. I use the following procedure:

Given a parameter iteration in the Nelder-Mead algortihm, Γk,

1. Solve the model

1This will most likely involve an informal discussion rather than a mathematical proof, as is often the case in

moment-based estimation of dynamic models, and as the authors make clear.
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2. Simulate a panel data of weekly histories as in the actual data, using the same sample-selection

criteria

3. Evaluate the objective function.

I then repeat until the objective function value has stabilized – although not necessarily converged

– and re-run the best stabilized point as the initial vector in the Nelder-Mead process. Having

arrived at the estimates Γ̂ in Table 1, I then generate 2000 uniform quasi-random Sobol points in

the parameter subspace [0.5Γ̂j , 1.5Γ̂j ] as well as 100 Sobol points in the subspace [0.95Γ̂j , 1.05Γ̂j ] and

100 in [0.98Γ̂j , 1.02Γ̂j ], each time comparing the objective function value of the best point in each

subspace to its value at Γ̂. My reason for using Sobol points is to provide a “more uniform” search

over the parameter space for local minima. Indeed, consider Figure 1 in the Appendix. In this simple

example of searching over a [0, 1]2 parameter space, I generate 1000 random Uniform(0,1) points and

1000 Sobol points. As can be seen, random number generation can have a tendency to cluster and

leave parts of the space unexplored.

Let mk, k = 1, ...,K denote an empirical moment and let mk(Γ) be the corresponding model moment

that is simulated for a given parameter vector Γ. To deal with issues relating to the large variation in

the scales of the moments, I minimize the arc-percentage deviation of model-implied moment mk(Γ)

from target mk. That is, my SMM estimator is defined as

Γ̂ = arg min
Γ

F(Γ)′WF(Γ), F(Γ) = [F1(Γ), ..., FK(Γ)], (9)

and

Fk(Γ) =
mk(Γ)−mk

0.5 (|mk(Γ)|+ |mk|)
. (10)

The reason for using arc-percent deviation instead of percent deviation is because some of the empirical

moments used in estimation are zero or close to zero, and so using (10) eliminates this problem. As

seen in Appendix A, we can categorize the moments into three broad groups: employment, wages, and

training moments. The weighting matrix W I’ve used is diagonal and (given moments are independent

of scale) assigns 10% weight to the training data moments, and 90% to both employment and wage

data moments2. I’ve done this based on my subjective belief about the importance of each moment

and because the choice of weighting matrix should not affect consistency of the estimator – only

precision. I have, however, estimated the model using the simple deviation of model moments from

target and with a weighting matrix where the weights are the inverse of the variance of the empirical

moments and obtain the same result. But the point here is that given some of the most important

moments also happen to have the most noise (discussed in the next section) and one is trying to learn

2More precisely, with 4 training moments, each is given weight 0.1/4 and with a remaining 231 moments for employ-

ment and wages, each is given weight 0.9/231.
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of which moments to use for identification, it is not necessarily the case that one would like to use

“optimal” weighting.

Table 1 compares the estimates, Γ̂, I obtain and the ones reported in FGL (2017). Despite some

differences, the qualitative story is the same: (i) the job offer rate for the unemployed is higher than

for the employed, (ii) general training becomes less productive the higher is worker ability and (iii)

the mean initial ability estimates is increasing in education. In addition, and as seen in Figure 2, the

fraction of time spent training decreases with time, and initially increases for match-specific training

because δ̂1
θ > 0. However, a noticeable difference is the contact rate of workers with firms. My

estimates suggests that unemployed workers receive offers on average once every two weeks (1/0.4585)

while employed workers receive offers on average once every three weeks (1/0.373). The estimate of β0

I obtain is similar to the authors’ and suggests that an individual who spends his whole time training

is observed to be receiving training with probability 0.03.

4.3 Model Fit

Table 2 compares the fit of the model at both mine and the authors’ parameter estimates. Panel A

suggests the estimates I obtain fit employment transition data levels quite well for each education

level, but doesn’t capture the positive relationship between job-stayer probability and education, and

the negative relationship between job-mover probability and education. Turning to Panel B and C,

my estimates, like FGL (2017), are able to capture the effect of an intervening non-employment spell

on the wage growth of job-movers. In the data, wage growth is 0.03 for those with non-employment

(EUE) and 0.12 for those without (EE), while my estimates are 0.03 and 0.25 respectively. As in

FGL (2017), one can see that fitting the levels of these wage moments for job-to-job transitions

is challenging, which is problematic because the authors believe wage moments to be essential for

identifying the productivity distributions. It turns out that the wage moments relating to job-movers

have the fewest observations and high variance3. Furthermore, let gn denote the vector of moments

with expectation g0, and let fR(Γ) denote the simulated vector so that under correct specification

g0 = f(Γ0) when R→∞. We know that

√
n (gn − fR(Γ0))→d N

(
0,

(
1 +

1

R

)
S

)
, (11)

where S is the variance-covariance matrix of the empirical moments. Given asymptotic normality, we

know that for such noisy wage moments, we can build confidence intervals that are likely to be wide.

Thus, while it is challenging fitting the levels for these moments, the model-implied estimates are not

3Indeed, take wage growth for those who completed college and experienced an intervening non-employment spell in

Panel B. The data suggests wage growth of 0.23, but there are only 22 observations, and the variance is 0.16, implying

a mean-to-standard deviation of 0.59.
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Parameter estimates

PARAMETERS FOR EMPLOYMENT TRANSI-

TION

Authors Mine Authors Mine

flow value of unemployment b 6.4705 9.8965 (0.857) (0.942)

job offer rate - unemployed λu 0.1375 0.4585 (0.019) (0.068)

job offer rate - employed λe 0.0685 0.3730 (0.023) (0.050)

exogenous job separation rate η 0.0036 0.0007 (0.001) (0.0003)

PARAMETERS OF INVESTMENT FUNCTIONS

general ability investment TFP δa,0 0.0285 0.0430 (0.005) (0.004)

firm-specific investment TFP δθ,0 0.0229 0.0824 (0.003) (0.019)

state-dependence of general ability investment δa,1 -0.1353 -0.1697 (0.144) (0.041)

state-dependence of firm-specific investment δθ,1 0.4426 0.6822 (0.098) (0.124)

curvature of general ability investment δa,2 0.2826 0.3177 (0.084) (0.057)

curvature of firm-specific investment δθ,2 0.4426 0.6150 (0.062) (0.112)

rate of decrease in general ability ϕ̃−a 0.0014 0.0069 (0.0003) (0.002)

rate of decrease in match quality ϕ̃−θ 0.0113 0.1119 (0.003) (0.018)

PARAMETERS OF INITIAL ABILITY DISTRI-

BUTION

mean of initial general ability - High school µa,1 0.8844 0.8921 (0.159) (0.239)

mean of initial general ability -Some college µa,2 1.1515 1.1426 (0.112) (0.138)

mean of initial general ability - BA or higher µa,3 1.4489 1.3728 (0.083) (0.1313)

variance of initial ability σa 0.2041 0.2586 (0.086) (0.056)

PARAMETERS OF JOB OFFERS

mean of match quality distribution µθ 1.4078 1.5013 (0.040) (0.088)

variance of match quality distribution σθ 0.2895 0.2589 (0.034) (0.030)

PARAMETERS GOVERNING TRAINING OB-

SERVATION

intercept for training observation β0 -2.7331 -2.8198 (0.039) (0.902)

coefficient on τ for training observation βτ 1.0000 1.0000 – –

Table 1: Parameter estimates
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unreasonable and often would fall within such intervals.

Table 3 shows the fit of the model to the training data. In total, the model is able to provide a good

fit to both the level and direction, with incidence of training decreasing in education.

Finally, Table 4 shows the fit of the model against untargeted moments – that is, moments I did

not use in estimation. This table was not reported in FGL (2017) and so I can only compare my

estimates to the data. However, given the similarities up to now of my estimates to theirs, it might

serve as some approximation. Since we use wage observations at each interview date, one can define

the length of a job spell by the number of interview dates it spans. Table 4 shows that, as in the data,

the length of a job spell in the model is increasing in education. We see that the proportion of job

spells spanning 3 or more interviews is 9, 12 and 15 percent for HS, SC and College respectively. In

the model it is 18, 20, 24 percent.

5 Informative moments

Up to now, I have discussed in detail how I obtained my estimates in order to build some confidence

that they might be considered a minimum, and have compared the fit of the model to what is reported

in FGL (2017). The goal of this exercise was to build confidence that what I obtained might serve

as a close-enough approximation to what the authors report. Accepting this, we can now discuss the

relative importance of the different groups of moments for recovering precise estimates of the struc-

tural parameters. In particular, we recall the following from FGL (2017):

“by utilizing some training data, albeit of questionable quality, we can get some additional in-

formation on the values of (a, θ)... That is, our model produces a mapping from the state variables

(a, θ)→ (τa, τθ). While this mapping is not, in general, invertible, it still conveys information on the

set of values (a, θ) consistent with the reported training time of the individual.” (274).

In this section, I will focus on two parts of the preceding extract: (i) the quality of the training

data, and (ii) its informativeness with respect to (a, θ). Indeed, the training data used is likely to be

noisy and a rough approximation to the truth. Following Honoré et al. (2020) consider the following

question: How much precision would we lose if the k-th moment is subject to a little additional noise?

Recall the SMM standard errors:

Σ =

(
1 +

1

R

)
(D′WD)

−1
D′WSWD (D′WD)

−1

=

(
1 +

1

R

)
M1SM

′
1,

(12)
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Model fit: annual labor turnover rates and wage growth

HS Some col-

lege

College

or more

Panel A: Employment-to-Employment (EE) transitions btw t− 1 and

t

% of EE transitions with no job-change

.......Data 81% 85% 88%

.......Authors 74% 74% 76%

.......Mine 88% 84% 82%

% of EE transitions with job change (job-to-job transitions)

.......Data 19% 15% 12%

.......Authors 25% 26% 24%

.......Mine 12% 16% 18%

% of job-to-job transitions with non-employment btw t − 1 and t

.......Data 4% 3% 2%

.......Authors 8% 8% 8%

.......Mine 4% 7% 8%

% of job-to-job transitions with no non-employment btw t− 1 and t

.......Data 15% 12% 10%

.......Authors 17% 17% 16%

.......Mine 7% 9% 10%

Panel B: Wage Growth btw t − 1 and t

EE transitions with no job change

.......Data 0.08 0.08 0.09

.......Authors 0.08 0.08 0.08

.......Mine 0.13 0.13 0.15

EE transitions with job change

.......Data 0.11 0.15 0.20

.......Authors 0.09 0.11 0.11

.......Mine 0.17 0.15 0.11

job-to-job transitions with non-employment btw t − 1 and t

.......Data 0.06 0.06 0.23

.......Authors -0.10 -0.06 -0.02

.......Mine 0.03 0.05 0.03

job-to-job transitions with no non-employment btw t − 1 and t

.......Data 0.12 0.17 0.20

.......Authors 0.18 0.19 0.17

.......Mine 0.25 0.22 0.18

Panel C: % of Negative Wage Growth btw t − 1 and t

EE transitions with no job change

.......Data 17% 19% 23%

.......Authors 38% 37% 37%

.......Mine 40% 40% 38%

EE transitions with job change

.......Data 32% 32% 28%

.......Authors 37% 35% 34%

.......Mine 40% 39% 44%

job-to-job transitions with non-employment btw t − 1 and t

.......Data 39% 47% 27%

.......Authors 61% 57% 50%

.......Mine 51% 47% 49%

job-to-job transitions with no non-employment btw t − 1 and t

.......Data 30% 28% 28%

.......Authors 26% 24% 26%

.......Mine 34% 34% 39%

Table 2: Annual labor turnover rates and wage growth (Targeted)
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Incidence of training

All HS Some col-

lege

College

or more

% who got training at least once

.......Data 15% 18% 13% 13%

.......Authors 17% 21% 16% 12%

.......Mine 12% 16% 11% 9%

% who got training at the start of job spell

.......Data 6% 10% 5% 3%

.......Authors 5% 6% 4% 3%

.......Mine 4% 5% 5% 3%

Table 3: Incidence of training (Targeted)

Proportion of job spells by the number of interview dates they span

HS Some college College or

more

0 Data 61% 55% 53%

Mine 64% 61% 55%

1 Data 23% 24% 21%

Mine 12% 12% 14%

2 Data 7% 9% 11%

Mine 6% 6% 7%

3 Data 3% 4% 6%

Mine 5% 4% 5%

4 Data 2% 3% 3%

Mine 4% 3% 3%

5 Data 1% 2% 3%

Mine 3% 2% 2%

6 Data 3% 3% 3%

Mine 6% 11% 14%

Table 4: Length of job spell (Untargeted)
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where R is the number of replications used in simulating the model – which I’ve set to 10. The K × p

matrix D := E
[
∂g(Γ)
∂Γ′ |Γ=Γ0

]
is the Jacobian of the moment function g(Γ) with respect to the structural

parameters evaluated at the true value Γ0, and S is, as mentioned in (11), the variance matrix of the

empirical moments. Informally, we can see then that when the variance of the moments S increases

by 1, the asymptotic variance of the structural parameter estimates increases by M2
1 . More formally,

we can define

E(j,k) :=
∂Σj,j

∂Sk,k︸ ︷︷ ︸
M1OkkM ′1

Sk,k

Σj,j
(13)

where Okk is a K ×K matrix with a 1 in entry (k, k) and zeros elsewhere. The measure (13) is an

elasticity of the percentage change in the precision of the j-th parameter, σ2
j , to a percentage change

in the variance of the k-th moment. Table 5 shows the moments each parameter is most responsive

to according to the sensitivity measure (13) and computation of the standard errors can be found in

Appendix B. It is immediate that moments characterising the distribution of wages for job-movers are

important for the precision of parameter estimates. There is one exception: the parameter governing

training observation, β̂0. We see that a one percent increase in the noise of the moment “fraction

receiving training in current job” leads to a 70% increase in its asymptotic variance.

An individual is classed as ‘EE’ if they were employed at both interview dates t − 1 and t, with a

different employer at t and have spent less than five weeks unemployed between interview dates. An

individual is ‘EUE’ if they have spent more than five weeks unemployed between interview dates.

The moment “wt−1, 1 change, EE, ed=1” refers to the mean wage at interview date t−1 among those

individuals who (i) have completed high school (ii) had a job-to-job transition with an intervening

unemployment spell of less than five weeks and (iii) had exactly one job change from t− 1 to t.

The moment “wt, > 1 change, EE, ed=1” refers to the mean wage at interview date t among individuals

who (i) have completed HS (ii) are EE (iii) changed jobs more than once from t− 1 to t.

The moment “w1, two wage obs., ed=2” refers to the mean of the first wage across job spells having

exactly two wage observations for individuals with some college.

The moment “w, 6-8yrs, ed=3” refers to the mean wage among individuals who have been in the

labor market for 6-8 years and completed college.

Consider now the following question: How does the asymptotic variance change from completely

excluding the k-th moment? Let

M2,k = Σ̃k − Σ, (14)
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Sensitivity 1: Additional noise

Moment Percent

b wt, > 1 change, EE, ed=1 8.63

λu wt−1, > 1 change, EE, ed=2 5.15

λe wt, > 1 change, EE, ed=1 9.00

η w2
1, two wage obs., ed=2 4.32

δa,0 w2
t−1, 1 change, EE, ed=1 4.53

δθ,0 w2
t , 1 change, EUE, ed=3 5.83

δa,1 wt−1, > 1 change, EE, ed=2 6.94

δ1,θ w, 6-8yrs, ed=3 4.18

δ2,a w2
t−1, > 1 change, EUE, ed=1 9.84

δ2,θ w2
t , > 1 change, EUE, ed=2 10.9

φ̃−a w2
t , > 1 change, EUE, ed=3 4.58

φ̃−θ w2
t−1, 1 change, EUE, ed=1 8.13

µa,1 w2
t−1, 1 change, EUE, ed=1 5.05

µa,2 w1 two wage obs., ed=2 3.49

µa,3 w2
t−1, > 1 change, EE, ed=2 4.42

σa w2
t−1, 1 change, EUE, ed=2 6.10

µθ wt−1, > 1 change, EE, ed=2 6.76

σθ wt−1, > 1 change, EE, ed=2 8.95

β0 fraction receiving training in current job 70.0

Table 5: Which moment is each parameter most responsive to?

where

Σ̃k =

(
1 +

1

R

)(
D′W̃kD

)−1

D′W̃kSW̃kD
(
D′W̃kD

)−1

(15)

W̃k = W � (ιkι
′
k), (16)

ιk is a K × 1 vector with ones in each entry but zero in the k-th entry, and � denotes element-wise

multiplication. Essentially, the new weighting matrix W̃k excludes the k-th moment by keeping all

entries of W but setting each element in row and column k to zero. It is clear that we need K > p

for the model to remain identified. Similar to before, we can make our measure scale-invariant by

focusing on percentage changes:

∆(j,k) =
M j,j

2,k

Σj,j
, (17)

which measures the percentage change in the asymptotic variance of the j-th parameter from exclud-

ing moment k. Table 6 shows the moments each parameter is most responsive to according to the

sensitivity measure (17). Firstly, it is worth noting that the moments listed are almost identical to

Table 5, and so it is still the case that moments characterising the wage distribution of job-movers

are important for precision. Secondly, we see just how important training data is for β0: Excluding

the training moment now leads to a 341% increase in its variance.
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Sensitivity 2: Excluding moment

Moment Percent

b wt, > 1 change, EE, ed=1 12.8

λu wt−1, > 1 change, EE, ed=2 9.14

λe wt, > 1 change, EE, ed=1 13.3

η w2
1, two wage obs., ed=2 5.50

δa,0 wt−1, > 1 change, EE, ed=2 7.75

δθ,0 wt, 1 change, EUE, ed=3 7.83

δa,1 wt−1, > 1 change, EE, ed=2 12.3

δ1,θ w, 6-8yrs, ed=3 5.56

δ2,a w2
t−1, > 1 change, EUE, ed=1 15.0

δ2,θ w2
t , > 1 change, EUE, ed=2 15.6

φ̃−a wt−1, > 1 change, EE, ed=1 7.00

φ̃−θ w2 before 1 change, EUE, ed=1 12.6

µa,1 w2
t−1, 1 change, EUE, ed=1 7.84

µa,2 w2
t−1, 1 change, EUE, ed=1 5.23

µa,3 w2
t−1, > 1 change, EE, ed=2 6.26

σa w2
t−1, 1 change, EUE, ed=2 8.41

µθ wt−1, > 1 change, EE, ed=2 12.0

σθ wt−1, > 1 change, EE, ed=2 15.9

β0 fraction receiving training in current job 341

Table 6: Which moment is each parameter most responsive to?

Now consider the effect of adding noise to a group of moments which, given similarities between

the two tables, might indicate the importance of excluding the same group from estimation. The

extract from FGL (2017) at the beginning of this section suggested that the inclusion of training data

facilitates estimation of the (a, θ) distribution. The paper, however, does not provide the reader with

how this might be so; instead, relying on the theoretical mapping from the parameters of interest to

the training data. We can use the previous sensitivity measures to formalise this. The total differential

of the asymptotic variance w.r.t moments k, ..., k + l is:

dΣj,j =
∂Σj,j

∂Sk,k
dSk,k + ...+

∂Σj,j

∂Sk+l,k+l
dSk+l,k+l (18)

which implies

dΣj,j

Σj,j
=
∂Σj,j

∂Sk,k
dSk,k

Σj,j
+ ...+

∂Σj,j

∂Sk+l,k+l

dSk+l,k+l

Σj,j

= E(j,k) + ...+ E(j,k+l).

(19)

In estimation, I have used a total of four training moments. Consider the effect of adding noise to each

these moments on the precision of µ̂θ and σ̂θ. Table 7 shows that the total effect on the mean and

standard deviation is 0.01% and 0.05% respectively. Therefore, it seems that such moments have very

little effect on the the precision of our estimates of the worker-firm and worker ability distributions.
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Sensitivity to groups of moments

µ̂θ σ̂θ

Training 0.01% 0.05%

EE (wt − wt−1) 20.1% 21.3%

EUE (wt − wt−1) 9.95% 4.60%

EE 0.431% 0.599%

EUE 1.68% 1.90%

Table 7: Sensitivity of θ distribution to groups of moments

On the other hand, the total effect from the group of moments that make up wage growth between

interview dates for EE individuals is 20% for µ̂θ and 21% for σ̂θ. Finally, the total effect from the group

of moments relating to the fraction of EE workers is 0.431% and 0.599% respectively. It seems then,

and as mentioned in FGL (2017), that inclusion of moments relating to wage growth more so than

employment transition, are important for recovering reliable estimates of the distribution parameters.

6 Sensitivity of counterfactual

In this section, we consider the sensitivity of the unemployment rate when a minimum wage is binding

to the calibrated bargaining parameter. As in FGL (2017), I introduce a $15 per hour minimum wage

(in 2014 dollars corresponding to $10.17 in the 1994 dollars used in the analysis). In the data, the

mean unemployment rate at interview dates is 14% while in the model it is 9.2%. The introduction

of the minimum wage increases this to an overall rate of 9.8%. As in FGL, the minimum wage has

the largest effect on employment for individuals who have just entered the labor market. Indeed, the

unemployment rate among individuals with 0-2 years in the labor force increases by 8.63% relative to

baseline, while it increases by a mere 1.41% for those with 3-5 years and decreases by 3.19% relative

to baseline for those who have been in the labor force for 6-8 years. Conditional on employment,

average wages increases by 0.83% for new entrants, and falls by 0.11% and 0.05% for the other two

groups respectively. Figure 3 shows the effect of the minimum wage policy on the acceptable match

values. Consistent with FGL (2017), we see that the effect is concentrated at the lower end of the

worker ability scale.

Let

h(Γ, α) = 1[emp(Γ, α) = 0|interview date] (20)

be an indicator for whether an individual in the model is unemployed at an interview date, which

of course depends on the structural parameters Γ and the calibrated bargaining parameter α. The
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moment of interest is then the sample average of (20). Jørgensen (2020) defines the sensitivity of the

moment to the calibrated parameter as

H = A+BZ (21)

where A = E
[
dh(Γ,α)
dα

]
is 1× 1, and B = E

[
∂h(Γ,α)
∂Γ′ |Γ=Γ0

]
is the 1× p Jacobian, and Z = ∂Γ

∂α is a p× 1

vector of the sensitivity of the estimated structural parameters to the calibrated parameter. To gain

intuition for (21), consider the scalar case and notice that H is just an application of the chain rule

once one recalls that h(Γ, α) = h(Γ(α), α). The direct effect of α on h(·) is A, while the indirect effect

is BZ. It is straightforward to show that if one assumes α = α0 or, more generally, is a consistent

estimator of α0, then Z takes the form

Z = M1G, (22)

where as before M1 = −(D′WD)−1D′W , while G = E
[
∂g(Γ|α)
∂α |Γ=Γ0

]
is the K × 1 Jacobian of the

moment function w.r.t the calibrated parameter4. The proof is given in Appendix C. Table 8 shows the

vector Z, but instead transformed into an elasticity. The parameter most responsive to a one percent

increase in α = 0.5 is η̂, which decreases by 56% and governs exogenous separations between the worker

and firm. The signs in Table 8 are mostly consistent with those reported in the appendix of FGL

(2017), and there are a few similarities such as investment technology parameters being particularly

responsive to changes in α. However, one should keep in mind that the sensitivity measure (22) holds

within a neighbourhood of α = 0.5 and we know from FGL (2017), who consider α = 0.2 and 0.8,

that the effects are nonlinear. Nevertheless, to the extent that the reader is interested in local changes

around the calibrated parameter not reported in the paper, (22) serves as a useful approximation.

We can make (21) an elasticity by multiplying by α/h(·). At the estimated values, Γ̂, and α = 0.5, the

elasticity of the unemployment rate at interview dates when the minimum wage is binding is 8.51%.

This implies that a 1 percent increase in the bargaining power α implies the overall unemployment rate

at the interview dates will be 10.64%. Repeating this exercise for average wages for those who have

been in the labor force for 0-2 years, we get an elasticity of −1.43%. This implies that at Γ̂ and α = 0.5,

a one percent increase in bargaining reduces the mean wage of new entrants by −0.603% relative to

baseline instead of increasing it by 0.83% as previously found. The sensitivity measure therefore shows

how the qualitative result can possibly change with variation in the calibrated parameter. It is worth

noting, however, that the quantitative results are small for possibly two reasons. First, a minimum

wage of $10.17, as the authors make clear and as illustrated in Figure 3, is small and only really affects

the lower end of the ability distribution. Second, the object (20) is an indicator function that we take

4One advantage of this approach to calculating Z (and H) is that it is numerically feasible. Indeed, M1 is constructed

from the earlier standard error stage, while G involves solving and simulating the model twice if using forward-backward

finite difference. A brute-force approach would involve re-estimating the model to compute the change in Γ̂.
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Sensitivity to bargaining parameter

Percent Value

b 1.083 10.004

λu -32.95 0.3074

λe 4.768 0.3908

η -56.47 0.0003

δa,0 6.223 0.0457

δθ,0 -7.334 0.0764

δa,1 -30.75 -0.1175

δθ,1 15.04 0.7848

δa,2 -15.84 0.2674

δθ,2 -11.79 0.5425

φ̃−a 35.24 0.0094

φ̃−θ 7.509 0.1203

µa,1 12.79 1.0062

µa,2 0.599 1.1495

µa,3 2.795 1.4112

σa -2.080 0.2532

µθ 2.451 1.5381

σθ -12.94 0.2254

β0 -4.599 -2.6901

Table 8: Sensitivity of each parameter to α = 0.5

the (numerical) derivative of when computing our sensitivity measure. In the absence of smoothing,

we might think of our results as lower bounds.

7 Conclusion

In this paper, I revisited the identification problem in Flinn et al. (2017). More precisely, I asked

the question of whether the authors’ claim of wage moments within and across job spells being

essential for estimating the distribution of the worker-firm match productivity and the worker ability

distributions could be verified. To help formalise some of the claims, I used sensitivity measures

that have been recently proposed in the econometrics literature seeking to become more aware and

minimise sensitivity of parameter estimates in dynamic structural models. Using these measures, I

was able to verify the claims of the authors, and go further: not only are moments characterising

the wage distribution of job-movers important for recovering reliable estimates of the distributions,

but moments characterising employment transitions seem to be far less important while those related

to worker training seem to be negligible. This latter result counters the authors’ intuition for the

importance of training data for the distribution parameters.

One advantage to the proposed sensitivity measures is that they do not go beyond the researcher’s

17



information set, but instead ask what more could have been learned about primitive parameters. This

is important because in the absence of matched employer-employee data, the identification problem

becomes more challenging and one has to carefully choose which moments to include. However,

a drawback of these measures is that they are local. Indeed, each measure can hold as a good

approximation close to the true Γ0, and this is a consequence of the fact that they all depend on the

asymptotic normality of the SMM estimator, Γ̂, which is derived from a local expansion around Γ0.

Ideally, one wishes to better understand their SMM objective function over the entire parameter space

given their chosen moments. Identification of the parameters is a necessary condition for consistency

of the asymptotic normal estimator. This then implies that we should treat the measures in Section 5

as helping the researcher choose the minimum sufficient number of moments that identify the model,

as opposed to which moments to include in the first place.
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Appendices

A Moments used in Estimation

In addition to those moments shown in Tables 5 and 6, some additional moments used in estimation

are:

Employment transition

1. EU probability

2. unemployment rate at interview

3. EE transition probability

4. fraction EUE, 1 change, ed=1,2,3

5. fraction EUE, 2 changes, ed=1,2,3

6. fraction EUE, > 2 changes, ed=1,2,3

7. fraction EE, 1 change, ed=1,2,3

8. fraction EE, 2 changes, ed=1,2,3

9. fraction EE, > 2 changes, ed=1,2,3

10. fraction same employer, ed=1,2,3

Wages

1. mean wage after 0-2 years, ed=1,2,3

2. mean wage after 3-5 years, ed=1,2,3

3. mean wage after 6-8 years, ed=1,2,3

same employer

4. mean w2, 2 wage obs., ed=1,2,3

5. mean w1 × w2, 2 wage obs., ed=1,2,3

6. mean w2 − w1, 2 wage obs., ed=1,2,3
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7. mean w3, 3 wage obs., ed=1,2,3

8. mean w2
3, 3 wage obs., ed=1,2,3

9. mean w1 × w3, 3 wage obs., ed=1,2,3

10. mean w3 − w1, 3 wage obs., ed=1,2,3

11. mean w4, > 3 wage obs., ed=1,2,3

12. mean w4 − w1, > 3 wage obs., ed=1,2,3

job-to-job transition

13. mean wt−1, 1 change, EUE, ed=1,2,3

14. mean wt, 1 change, EUE, ed=1,2,3

15. mean wt−1, > 1 change, EUE, ed=1,2,3

16. mean wt, > 1 change, EUE, ed=1,2,3

17. mean wt−1, 1 change, EE, ed=1,2,3

18. mean wt, 1 change, EE, ed=1,2,3

19. mean wt−1, > 1 change, EE, ed=1,2,3

20. mean wt, > 1 change, EE, ed=1,2,3

As well as second-moments of job-to-job transitions.

Training

1. fraction receiving training in current job

2. fraction receiving training in current job by education ed=1,2,3

B Computation of standard errors

The SMM variance-covariance matrix used throughout the analysis is computed using a diagonal

weighting matrix with elements being the inverse of the variance of the empirical moments. Moreover,

the variance-covariance matrix of the empirical moments is also diagonal. The reasons are twofold:

(i) I follow the method used in FGL (2017) with respect to S and (ii) Altonji and Segal (1996)
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highlight the small-sample bias present when using the full optimal weighting matrix. Of course, the

computation of S has the implicit assumption that the empirical moments are uncorrelated, which is

unlikely to be true. Therefore, the variance matrix takes the form

Σ =
(
D̂′Ŵ D̂

)−1

. (23)

To compute the Jacobian matrix, I do the following:

D̂j =
g(Γ̂ + εj)− g(Γ̂− εj)

0.05Γj
(24)

where D̂j is the j-th column of the K × p Jacobian matrix D̂, and εj is a vector of zeros with one

positive element at the j-th position equal to 2.5% of the parameter value Γ̂j . The K × 1 vector g(Γ)

is the simulated moment vector. Thus, with 19 parameters estimated, and with forward-backward

finite-differencing used, obtaining D̂ and thus, obtaining Σ, requires solving the model 38 times in

order to evaluate the simulated moments. In total, this procedure takes 1.5 hours.

C Proofs

In this section, I provide the proof to the sensitivity of the estimated structural parameters, Γ̂, to

the calibrated bargaining parameter α, which is given in (22). The proof resembles that found in

Jørgensen (2020) but I give a little more detail. Consider the minimum-distance objective function

Qn(Γ|α) =
1

2
gn(Γ|α)′Ŵgn(Γ|α). (25)

Suppose Q(Γ|α̂) and Qn(Γ|α̂) and the parameter space satisfy the requirements for Γ̂ to be a consistent

estimator of Γ0, when p limn→∞ α̂ = α0. Then the approximate first-order condition holds:

op(n
− 1

2 ) =
∂Qn(Γ̂|α̂)

∂Γ

= −Dn(Γ̂|α̂)′Ŵgn(Γ̂|α̂).

(26)

If we take a mean-value expansion of the term gn(Γ̂|α̂) around Γ0 then

op(n
− 1

2 ) = −Dn(Γ̂|α̂)′Ŵ (gn(Γ0|α̂) +Dn(Γ̃|α̂)(Γ̂− Γ0)), (27)

where Dn(Γ̂|α̂), Dn(Γ̃|α̂) →p D(Γ0|α). We can rearrange (27) and represent it as (suppressing α

dependence)

Γ̂ = Γ0 −
(
Dn(Γ̂)′ŴDn(Γ̂)

)−1

D′nŴgn(Γ0) + op(n
− 1

2 )

= Γ0 + M̂1gn(Γ0) + op(n
− 1

2 )

(28)
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which converges in probability to

Γ̂(α) = Γ0 +M1(α)g(Γ0|α). (29)

where p limn→∞ = α. The Jacobian of the estimated structural parameters w.r.t α is then

dΓ̂

dα
=
dM1(α)

dα
g(Γ0|α) +M1(α)

dg(Γ0|α)

dα
. (30)

If α = α0 then g(Γ0|α0) = 0 which implies

Z = M1G. (31)

22



D Figures

Figure 1: Uniform vs. Sobol sequences

Figure 2: Simulated Training
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Figure 3: Minimum acceptable match value
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