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Abstract

We consider the problem of inference in a parametric equilibrium model
of trade. In our setting with multiple locations and multiple sectors, com-
mon trade shocks generate differential exposure among locations, spillovers
between locations, and heterogeneous responses in the outcome. When the
data generating process (DGP) admits an infeasible representation of these
outcomes in terms of a set of sufficient statistics for the spillovers, we can
instead incorporate interference into regressions using own exposure and a
function of neighbor exposure and an interactions matrix, although this may
lead to misspecification of the regression model for the true underlying DGP.
We show that the estimands of the linear model can be expressed as linear
combinations of sector-location causal effects, or location causal effects. De-
pending on the extent of misspecification, the OLS estimators possibly fail to
converge and we provide conditions for (i) the estimators to be consistent for
the estimands, and (ii) valid inference using a variance estimator that agrees
with a class of structural models of gravity trade and produces confidence
intervals with asymptotically correct coverage. In contrast to cluster infer-
ence methods used in the empirical literature, which assume independence
between groups of locations, we show that our conditions allow for a sin-
gle cluster of locations exhibiting network dependence, but require the total
misspecification error to grow at a rate smaller than the sample size.
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rad Menzel for continuous support and helpful comments throughout the project. I also thank
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1 Introduction

This paper addresses the issue of making inferences in a class of equilibrium mod-
els using empirical specifications that only approximately capture the true inter-
dependencies between units. In our setting, common observable shocks gener-
ate differential responses in unit outcomes but the equilibrium model, which de-
scribes how units interact with one another following the shocks, does not admit
an estimable representation of outcomes in terms of variables capturing spillovers
– or interference – between units. This paper proposes using a linear regression as
an empirical specification for relating outcomes with the set of common shocks
in a way that accounts for interference between units, while recognizing possible
misspecification of the regression for the true, underlying structure of interfer-
ence.
Representation of a data generating process (DGP) in terms of a set of variables
that serve as sufficient statistics for interference is common within the quantita-
tive spatial literature (Redding and Rossi-Hansberg 2017). When these variables
are observable, one can control for them and estimate the effect of shocks on out-
comes that already accounts for spillover and feedback effects. The problem of
making inferences in settings where common shocks generate differential expo-
sure to shocks, creating heterogeneous outcomes, is known in the econometrics
literature as shift-share inference. We focus attention on these settings to speak
to problems that deal with units being subject to observable macro shocks, such
as when locations experience exogenous changes to trade conditions (D. H. Au-
tor, Dorn, and Hanson 2013). When the researcher would like to account for po-
tential interference from other units but the DGP does not admit estimable suffi-
cient statistics, we can use linear regressions to approximate the total effect of the
shocks on the outcomes.
This paper is closest to Adao, Kolesár, and Morales 2019 which proposes a method
for inference in these regression designs, but we make corrections that account for
the presence of equilibrium effects. We ask the following questions: What re-
strictions on the data, and on a model for the data, can we make if we want to
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do valid inference on the regression when there are spillovers and possible mis-
specification. In standard regression problems, we commonly make restrictions
on the data only; for example, the regressors and errors should have finite means
or variances. We explicitly require restrictions on both the data and a DGP be-
cause the latter will define what a spillover is and, therefore, what it means for
the linear regression model to be misspecified. In our setting, the misspecifica-
tion arises from two sources: (i) misspecification of treatment effect heterogeneity,
and (ii) misspecification of bilateral interactions. The former is in fact present in
the problem of Adao, Kolesár, and Morales 2019, and we show that just like their
paper, consistency of the OLS estimator can be obtained with fairly weak assump-
tions about errors in treatment effect heterogeneity, and no additional restriction
on this misspecification is needed for inference. The interesting case concerns our
assumptions about (ii). This concern arises from functional form misspecification
of interference of unit j in unit i’s outcome. Allowing for arbitrary interactions on
the true structure possibly threatens consistency of the OLS estimator and we pro-
vide sufficient conditions as well as a distribution theory that allows construction
of confidence intervals that account for the true structure of interactions among
units.
This paper is organized as follows: Section 2 describes the equilibrium model
thought to generate the data and govern interactions between locations in the
sample. We show that it does not admit a feasible sufficient statistics representa-
tion for the estimation of the effect of shocks on endogenous outcomes accounting
for interference from other units; this ‘first-best world’ isn’t attainable 1. We there-
fore derive a reduced-form representation of the outcome which we call the poten-
tial outcome under the experiment of assigning common shocks to each unit. We
show that it can equivalently be thought of as a problem of interference, whereby
the potential outcome for a given unit depends on other units in the sample.
Section 3 describes the econometric model and we can think of our regression
as using an exogenous mapping as a way of incorporating interference into the

1I use single quotes because, as we will see shortly, even if the model were to admit an estimable
sufficient statistic, it would require constant causal effects.
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outcome equation similar to how one would obtain an exogenous instrument for
interference when the model admits an observable endogenous sufficient statistic.
Thus, to the extent that we view the regression as a first attempt of approximating
the outcome, where the data is governed by a model of gravity trade with un-
known parameters, we attempt to uncover the restrictions on general equilibrium
responses required to do inference on these linear estimands. We show that the
projection coefficients are a linear combination of heterogenous treatment effects.
Section 4 analyzes the statistical properties of the OLS estimators. It shows that
the OLS estimator possibly fails to converge under arbitrary interaction structures.
We provide conditions to achieve consistency under restrictions on the rate of
growth of misspecification errors for general equilibrium effects on the outcomes.
We also provide conditions for a distribution theory and propose a valid variance
estimator for the construction of confidence intervals. Validity of these inference
methods require stronger assumptions on misspecification errors, but are valid
both conditionally and unconditionally on sample characteristics, and allow for a
single cluster of locations exhibiting network dependence. Section 5 concludes.

1.1 Related literature

The statistical literature on interference, i.e. violations to the Stable Unit Treat-
ment Value Assumption (SUTVA) of causal inference, focused on restrictive set-
tings. For example, Hudgens and Halloran 2008 use the concept of partial and
stratified interference in which only treatment assignment of units in a unit’s own
group and only the proportion of treated units affect outcome. Other papers have
focused on units that fall within a distance K > 0 affecting outcomes, for exam-
ple Alzubaidi and Higgins 2023. Such assumptions would be incompatible with
knowledge of general equilibrium spillovers. A recent wave of papers focusing on
more general settings include, for example, Leung 2022 or Sävje 2021 that treat the
prior literature as misspecified. In the former paper, a unit’s outcome is allowed to
depend on distant alters, but with decreasing effect on the one’s outcome, termed
Approximate Neighborhood Interference (ANI). We avoid use of ANI and use of
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distance-based measures, but consider misspecified exposure mappings.
In the trade literature, Donaldson and Hornbeck 2016, in a seminal paper, rep-
resent equilibrium outcomes as functions of a correct and observable sufficient
statistics. While they are able to estimate a causal effect, it is constant and their
representation requires a single sector. We use multiple sectors, focus on sets of
heterogeneous effects, and settings where these sufficient statistics are unobserv-
able.
Shift-share regressions have been used in the trade literature to study the impact
of trade shocks on local labor market outcomes accounting for spillovers. Adao,
Arkolakis, and Esposito 2019, in an extension of D. H. Autor, Dorn, and Hanson
2013, tackle the question of how China trade shocks affect U.S. local employment
and wages. They argue that estimates accounting for spillovers provide empirical
evidence that the aggregate impact of China trade shocks on labor market out-
comes are larger than what the literature had previously estimated due to being
amplified by spatial linkages and larger still than predictions of existing quantita-
tive spatial models. D. Autor, Dorn, and Hanson 2021, using the same regression,
find weak evidence of gravity-based spillovers of trade shocks across locations
on employment measures. Acemoglu et al. 2016 also use a differential-exposures
design similar to the previous papers where the unit of analysis is an industry
and the outcome is a measure for employment, but without the common shock.
In their paper, industries are linked in input-output space and exposure to China
trade shocks propagates upstream to affect output and hence employment. By
relaxing the assumption of independence between locations, as is done in D. H.
Autor, Dorn, and Hanson 2013, and instead allowing for spatial linkages, it is no
longer necessary to assume that locations are small open economies: changes in
economic conditions in a given location following a trade shock can be transmit-
ted to other regions.
In another paper that combines equilibrium with shift-share designs, Adao, Arko-
lakis, and Esposito 2019 attempt to estimate the aggregate and differential impact
of exposure variables on outcomes. They do so by using a general equilibrium
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gravity trade model to derive a reduced-form equation for the change in wages

ŵi = βii(θ)Xi +
n∑
j ̸=i

βij(θ)Xj, (1)

and estimate the deep parameters θ and thus the matrix of elasticities {βij(θ)}i,j .
This paper differs from Adao, Arkolakis, and Esposito 2019 in the estimand of
interest and the perspective we adopt about the disconnect between estimates
obtained in the empirical literature, and those obtained by existing quantitative
spatial models with regards to the effects of common trade shocks. Their paper ar-
gues for reconciliation between large empirical estimates of China import shocks
and those obtained using general equilibrium spatial models, which they argue
often fail to replicate their empirical counterparts2. However, this paper takes the
maintained hypothesis that the equilibrium model is the true DGP and that it is
the empirical papers that must be reconciled with it due to misspecification. In-
deed, this is particularly true because while Adao, Arkolakis, and Esposito 2019
argue that regression estimates are large, one could question the validity of the
inference method used: Forming independent clusters based on, for example, ge-
ographic proximity could fail to account for more complex spatial dependencies.
In spatial settings, units are certain to be interconnected and clustering could in-
validate conclusions about the statistical significance of the empirical magnitudes.
Furthermore, the reduced form representation (1) of the DGP reveals aggregate
causal effects, but it is unclear what regression estimands reveal and, therefore,
what quantitative models are supposed to be matching in terms of the estimated
responses in the outcome, even with a random assignment assumption for the
shocks. We attempt to be clear on our sampling assumptions and population of
interest. For example, we use a finite-population model in which the sole source
of randomness comes from the observed shocks.

2The introduction to Adao, Arkolakis, and Esposito 2019 states ”the credibility of the model’s
aggregate impact is severely undermined if it yields reduced-form elasticities that are inconsistent
with their empirical counterparts.”

6



2 Model

2.1 Overview of problem

Let n denote the number of locations in our sample, and S the number of sectors.
Suppose the outcome of interest in location i, Yi, is related to a set of common,
observable, sector shocks X = {Xs}Ss=1, and we are interested in their effect on
the outcome that accounts for spillovers – or interference – between locations:

Yi = fi,n(X1, ...,XS), (2)

where fi,n is an unknown function depending on the other n − 1 locations in the
sample. In some cases, it is possible to represent outcomes in terms of a small set
of observable sufficient statistics for interference, Ti = {Ti,r}Kr=1, that are functions
of the shocks3. Then

Yi = hi(Ti1, .., TiK) (3)

depends on other locations only through Ti. Empirical estimation of estimands
defined by (3) will account for spillovers between units. When these sufficient
statistics are not observable, we can combine Equation 2 with an empirical speci-
fication whose variables are observable and account for dependence on other lo-
cations, Yi = h̃i,n(T̃i1, ..., T̃ik), although this empirical specification is possibly mis-
specified for the true outcome model (2) and (3): conditional on T̃i, Yi still depends
on n (misspecification of 3), and h̃i,n ̸= fi,n (misspecification of 2). This paper asks
the following question: What restrictions on the data, and on a model for the data
(2), can we make if we want to do valid inference on h̃ = {h̃i,n}ni=1 when there are
spillovers following common shocks and our empirical specification h̃ is misspec-
ified?
We focus attention on the case when h̃ is a linear regression, set k = 2, and define
our observable variables to be T̃i1 = Xi =

∑S
s=1wisXs with sector weights (wis)Ss=1

such that
∑S

s=1wis ≤ 1 for all i, and T̃i2 =
∑n

j=1GijXj where G = {Gij} is a bi-

3’Small’ in the sense of K < n and K/n → 0 as the sample size grows.
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lateral interactions matrix such that
∑n

j=1Gij = 1, Gii = 0 for all i. Our empirical
specification is then

Yi = β1Xi + β2

n∑
j ̸=i

GijXj + εi. (4)

Equation 4 is the empirical specification that has been used by some of the papers
cited in the previous section.

2.2 Parametric model

Consider a parametric model M = M(θ), where θ are structural parameters. Let
N = n+ 1 consist of n locations of interest and a foreign region F . Let (ω1, ..., ωN)

be the vector of endogenous wages with wF = 1 so that statements about wage
changes are relative to F . The model M is defined by a system

Di(ω1, ..., ωn|{τijs}, A, Ã) = 0, (5)

for all i = 1, ..., n, A = {As, AFs}Ss=1 is a 2S × 1 vector of exogenous common (to
locations i = 1, ..., n) labor productivity, and Ã = {Ãis}n,Si,s is a nS × 1 vector of
idiosyncratic exogenous productivity. For location i we have Ais = AsÃis. The
vector of bilateral “iceberg” trade costs {τijs}N,N,Si,j,s is dimension N2S × 1 and will
be fixed in our analysis: τii,s = 1 ∀i and otherwise τij,s > 1. Due to Walras’ law,
stacking (5) we have a system of N − 1 equations: D(ω|τ, A, Ã) = 0.
Let xij,s be the share of j’s total imports shipped from i and γs > 0 the share of
spending each region allocates to sector s, and Wi the total income of region i.
Our excess demand function is equal to excess revenue defined as total revenue
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in i minus total income in i:

Di(ω|τ, A, Ã; θ) =
N∑
j=1

S∑
s=1

xij,sγsWj −Wi

=
N∑
j=1

S∑
s=1

τ 1−σij,s ω
1−σ
i Aσ−1

s Ãσ−1
is∑n

o=1 τ
1−σ
oj,s ω

1−σ
o Aσ−1

s Ãσ−1
os + τ 1−σFj,sA

σ−1
Fs

γsvjω
1+ϕ
j − viω

1+ϕ
i .

(6)

The formulation (6) can be motivated from a gravity trade model with a represen-
tative firm producing a good in each sector using only labor and individuals with
Cobb-Douglas preferences over sectoral composite goods that are produced us-
ing a CES aggregator over goods produced in different locations. Consequently,
xij,s ∈ (0, 1) for all (i, j) pairs so long as τij,s < ∞. While we can include labor
supply shocks by allowing the elements {vi}i to be random, we hold them fixed
in our analysis. We also abstract from productivity externalities. The parameter
vector θ = (σ, ϕ)′ contains the trade elasticity σ − 1 where σ > 1, and ϕ > 1 is the
elasticity of labor supply.

2.3 Sufficient Statistics Approach

It is often the case in spatial models that we seek a representation of the endoge-
nous outcomes of the model in terms of a set of sufficient statistics that capture
the general equilibrium effects of changes in fundamentals beyond i. Following
this literature, define CMAj,s ≡

∑N
o=1 τ

1−σ
oj,s w

1−σ
o Aσ−1

os as the consumer market ac-
cess in location j and sector s which represents its access to cheap products. In
equilibrium, we have

viω
ϕ+ϕ
i = ω1−σ

i

S∑
s

γsAis

N∑
j=1

τ 1−σij,s CMA−1
j,sWj

= ω1−σ
i

S∑
s=1

γsAisFMAi,s,
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where FMAi,s is firm market access in sector s for goods from i and is increasing
in cheap access to large markets with few trade partners. We can then rewrite this
equation in terms of the endogenous wage outcome in i as

ln(ωi) = κ ln

(
S∑
s=1

γsAisFMAi,s

)
+ ϵi, (7)

with κ = 1/(ϕ + σ) and ϵi = − ln vi/(ϕ + σ). Alternatively, we are interested
in changes in these variables. Let ω̂i ≡ lnω′

i − lnωi denote the change in wage
between the initial equilibrium, ω, and the new one, ω′ so that we may write

ω̂i = κ ln

(∑
s

(
γsA

′
isFMAi,s∑

s γsAisFMAis

)
exp (F̂MAis)

)
+ ϵ̂i,

The market access variables are sufficient statistics for interference: conditional
on values for FMAi,s, the wage for i depend only on fundamentals in i. In ad-
dition, as is typically the case in these class of models, they are endogenous: the
market access for i depends on ωi which is a function of the labor supply shock vi.
Researchers may wish to find observable approximations to these variables and
find an estimator for κ. However, as seen in (7), the market access variable enters
multiplicatively with the unobservable productivity shocks. Unless we assume
a single sector, this model will not give rise to an estimable sufficient-statistics
representation of outcomes in terms of variables capturing exposure to neighbors.
Relatedly, the market access variables themselves depend on the unobservable
network {τoj,s}. Furthermore, κ might not represent the estimand of interest: We
obtain constant causal effects from changes in the composite market access vari-
able as opposed to an estimand informative for a set of heterogeneous effects.
Such a set could be defined by using the sector market access terms FMAi,s, al-
though one would need a method that can handle potentially a large set of en-
dogenous variables and nonlinearity of the outcome in those variables.
In the next section, we give a reduced form representation for the wage in i in
terms of the observable shocks of interest.
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2.4 Reduced-form representation

Let Rt0 = diag(Rt0
1 , ..., R

t0
n ) be the matrix of initial revenues for locations. A first-

order log-linearization of (5) around the initial equilibrium implies:

0 =(Rt0)−1︸ ︷︷ ︸
n×n

∇logωD(ωt0|τ, At0 , Ãt0 ; θ)︸ ︷︷ ︸
n×n

ω̂︸︷︷︸
n×1

+ (Rt0)−1∇log ÃD(ω
t0|τ, At0 , Ãt0 ; θ)︸ ︷︷ ︸
n×nS

ˆ̃A︸︷︷︸
nS×1

+ (Rt0)−1∇logAD(ωt0|τ, At0 , Ãt0 ; θ)︸ ︷︷ ︸
n×S

Â︸︷︷︸
S×1

+ (Rt0)−1∇logχD(ωt0 |τ, At0 , Ãt0 ; θ)︸ ︷︷ ︸
n×S

χ̂︸︷︷︸
S×1

,

where χ̂ = {ÂFs}s denotes our shocks of interest. In the trade literature, these
productivity shocks often correspond to improvements in China’s productivity
owing to reform-driven transition to an open market economy. For example,
Galle, Rodrı́guez-Clare, and Yi 2023 specify the China trade shock as innovations
to China productivity that is consistent with observed changes in U.S. manufac-
turing imports from China. For now, we ignore the linearization error. Assuming
(Rt0)−1∇logωD(ωt0|τ, At0 , Ãt0 ; θ) is nonsingular we have

ω̂(χ̂) = ω̂(0) + g(ωt0 , τ, At0 , Ãt0 ; θ)χ̂.

This will give a linear-in-shocks representation for equilibrium outcomes. We first
verify that the representation is well-defined.

Proposition 2.1. For σ + ϕ > 1, κ = 1/(σ + ϕ), and Pij = ρt0ij ∝ ∂Di/∂ logwj ,
the matrix In − κP is nonsingular, hence B ≡ −(Rt0)−1∇logωD(ωt0|τ, At0 , Ãt0 , χt0 ; θ)
has an inverse, which we denote β ≡ B−1. Furthermore, β has a series representation:
βij =

1
σ+ϕ

(
1[j=i] +

∑∞
m=1 κ

mP
(m)
ij

)
where P (m)

ij is the (i, j) element of the matrix Pm.

Let {a1, a2, ..., am−1} for m ≥ 2 be indices. Then κmP
(m)
ij = κm

∑n
am−1=1

∑n
am−2=1 · ·
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·
∑n

a1=1 ρ
t0
i,am−1

· · · ρt0a2,a1ρ
t0
a1,j

where ρt0i,am−1
· · · ρt0a2,a1ρ

t0
a1,j

∝
(
∂Di/∂ logwam−1

)
· · ·

(∂Da2/∂ logwa1) (∂Da1/∂ logwj) gives the m-th order effect of changes in wage in j on i.

Appendix A.1 shows that the term we call the first-order effect, Pij ≡ ρt0ij , is
a sum of a direct interaction between i and j, and a term that represents how i

interacts with a region k and how j interacts with k. That is, it includes all direct
interactions, but is not limited to only the direct interaction between i and j. The
proof of Proposition 2.1 also reveals that ∂Di(ω

t0)/∂ logωi < 0 so that ∂ω̂i/∂ω̂j > 0

for all j. We can write the i-th change in wage as ω̂i =
∑n

j ̸=iB
−1
ii Bijω̂j+ gi(A, Ã, χ),

with the magnitude of the sum of the coefficients
∑n

j ̸=i |Bii|−1|Bij| < 1 by Diagonal
Dominance. This gives a linear-in-means representations to the structural model.
The reduced-form gives the potential outcome representation:

Proposition 2.2. Under the experiment of assigning S shocks {χ̂s}Ss=1 to all units, we
can write potential change in wage from the initial equilibrium for location i as

ω̂i(χ̂1, ..., χ̂S) = ω̂i(0) +
S∑
s=1

lt0i,sψisχ̂s +
n∑
j ̸=i

S∑
s=1

lt0j,sψijsχ̂s (8)

where lt0i,s is the initial labor share that i allocates to sector s, rt0jk,s is the share of j’s sector
s revenue that comes from k, ψijs = −βij(σ − 1)

∑N
k=1 r

t0
jk,sx

t0
Fk,s for j = 1, ..., n and βij

is given in Proposition 2.1.

Equation (8) shows us that the causal effect on ω̂i of a unit change in χs (or
equivalently AFs) from the initial equilibrium is lt0i,sψis +

∑n
j ̸=i l

t0
j,sψijs which, im-

portantly, depends on general equilibrium interactions ψijs, which is a function of
βij and the network τ as the two combine to determine the strength of spillovers.
The term ζjs ≡ −(σ − 1)

∑N
k=1 r

t0
jk,sx

t0
Fk,sχ̂s measures how a negative import shock

to j affects i: it is the total shock to j from increased sector s imports from the
foreign region F by its trading partners, with spillovers to i occurring through βij .
If we assume that this import shock is independent of location (i.e. same for all
j) then we get a potential outcomes model that is linear in exposures as in Equa-
tion 1:

∑
j ̸=i
∑

s l
t0
j,sψijsχ̂s =

∑
j ̸=i βij

∑
s l
t0
jsζs. This is a similar assumption made

12



in Adao, Arkolakis, and Esposito 2019. Nonetheless, our problem does not sat-
isfy the SUTVA assumption in standard causal inference settings. If we further
assume that βii is constant across i, then ψi = ψ then the second term of (8) is ψXi.
Our potential outcome model is also a natural extension of the one found in Adao,
Kolesár, and Morales 2019 to the case with interference. Unlike in that paper, we
do not remove bilateral costs τ = {τijs} because of the importance of geography
in explaining the spatial distribution of economic activity as studied in, for exam-
ple, Allen and Arkolakis 2014. Even in the absence of τ , ζjs = −(σ − 1)βijx

t0
F,sχ̂s

where xt0F,s is the common share of imports from F . We obtain the same expres-
sion for interference,

∑
j ̸=i βij

∑
s l
t0
jsζs so that the potential outcomes model of

Adao, Kolesár, and Morales 2019 would be misspecified when we use produc-
tivity shocks.

3 Linear Regression

We now return to our empirical model that specifies a linear relationship for in-
terference. We first restate the true outcome model for location i, corresponding
to (2), given the random vector (X1, ...,XS):

Yi = Yi(X1, ...,XS) = Yi(0) +
S∑
s=1

wisψisXs +
n∑
j ̸=i

S∑
s=1

wjsψijsXs. (9)

Remark 3.1. In a standard setting with a binary treatment Di ∈ {0, 1}, the outcome
variable is a linear function of the treatment because Yi = Yi(Di) = Yi(0) + Di(Yi(1) −
Yi(0)) = Yi(0) + Diτi, where τi captures heterogenous treatment effects. With inter-
ference and, moreover, with continuous treatment, it need not be true that the potential
outcome for i is linear in the treatment variables. We avoid ad-hoc linear potential out-
comes through the motivating structural model of Section 2.

Let Zn,i ≡
∑n

j ̸=iGijXj . The regression model is Yi = β1Xi + β2Zn,i + εi. The
shocks satisfy a random-assignment assumption E[Xs|F] = 0, s = 1, ..., S for
some conditioning set F that describes the characteristics of a population contain-

13



ing the n locations in our sample. Given the form of this specification and the
structural model of Section 2, we take the population of interest to be the n units
in the sample and define our conditioning set

F ≡ ({Yi(0)}ni=1, {wis}
n,S
i=1,s=1, {ψijs}

n,n,S
i=1,j=1,s=1),

where we keep the dependence of this set on n implicit. The gravity trade model
of Section 2 describes interactions between n units and our outcome variable
Yi(X1, ..., Xn) is realized after units are drawn into the sample. Thus, this problem
is inherently a finite-population model in that we remove sampling uncertainty
of locations. A similar point is made in Manski 1993. One way to introduce sam-
pling uncertainty of locations, where the sample is drawn from a larger superpop-
ulation, is to introduce dependence of Yi on population objects such as E[Xi|Ri]

whereRi denotes the reference group for i. Such a model might be motivated from
a structural model with a continuum of locations. Instead, the model of Section 2
describes interactions between n units in S sectors with an n×n matrix character-
izing spatial links. This also means that our estimands are indexed by (n, S), so
β1 = β

(n,S)
1 and δ1 = δ

(n,S)
1 . However, we may still wish to introduce uncertainty

through resampling of other shocks aggregated in Yi(0) or through resampling of
locations, and hence the weight matrix W. Each would be isomorphic to sam-
pling from a superpopulation with an outcome model following (4) because the
set F gives a description of locations in our sample, and introducing randomness
to its elements changes the description of units in the sample. Nonetheless, our
estimands will continue to be indexed by (n, S). Introducing uncertainty over lo-
cations (given n) gives rise to uncertainty over general equilibrium effects {ψijs}.
Conditioning on general equilibrium effects through ψijs allows us to speak to
papers such as Acemoglu et al. 2016 that choose pre-China shock input-output
spatial links that are unlikely to be endogenous to the subsequent shock.

Assumption 3.1. The shocks satisfy (i) E[Xs|F] = 0 (ii) Cov(Xs,Xt|F) = 0 for all
pairs (s, t) (iii) ∃(i, s) such that ∀(c1, c2) ∈ R2 with (c1, c2) ̸= 0, c1wis−c2

∑n
j ̸=iGijwjs ̸=
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0.

Assumption 3.1(i) allows us to avoid the use of an intercept, which is a normal-
ization, and avoid controls. It says that the sector shocks are randomly assigned
in the sense of being mean-independent from other unobservable shocks in Y (0)

as well as the shares W and general equilibrium interactions. It is a weaker re-
quiremet than the familiar Yi(x1, ...,xS) ⊥ Xs that also rules out selection. Let
Ẍni ≡ Xi − δZni the residual from the population projection of X on the linear
space {δ̃Zn : δ̃ ∈ R} and similarly Z̈ni ≡ Zni − γXi. The third assumption ensures
the estimands are well-defined along any sequence of finite populations; we need
non-zero variation in the variables Ẍn and Z̈n, i.e. linear independence in the vari-
ables Ẍn and Z̈n, or no multicolinearity.
Our projection coefficients are defined to be the best linear predictors, in the sense
of solving the following problem

(β1, β2)
′ := argmin

b
E

[
n−1

n∑
i=1

(Yi − b1Xi − b2Zni)
2 F

]
. (10)

The minimization (10) arises from a projection of the n vector Y onto the subspace
spanned by X and Zn and is consistent with the projection estimands (β1, β2) be-
ing constant across i. The following proposition shows that these estimands are
linear combinations of location-sector partial effects, or of location partial effects.

Proposition 3.1. Let Yi(x) be the potential outcome of unit i at value x = (x1, ..., xS)

from (9) with ∂Yi(x)/∂xs ≡ wisψis +
∑n

j ̸=iwjsψijs the partial effect of the sector s shock,
Xs. Under Assumption 3.1, the projection coefficient β1 in the linear regression model (4)
has the form

β1 =
n∑
i=1

S∑
s=1

λ
(n)
is

∂Yi(x)

∂xs
, (11)

where λ(n)is = E[ẌniXs|F]/
∑n

i=1E[Ẍ
2
ni|F].
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Alternatively, the projection coefficient can be expressed in the form

β1 = E

[
n∑
i=1

λ
(n)
i (Yi(X1, ...,XS)− Yi(0)) F

]
, (12)

where λ(n)i = Ẍni/
∑n

i=1E[Ẍ
2
ni|F] is mean zero. Therefore, β1 is the expected value of all

linear combinations of treatment effects Yi(X1, ...,XS) − Yi(0) that occur with positive
probability, where the weights of the linear combination are mean zero.

The implication for β1 in Proposition 3.1 is a generalization of Proposition 1 in
Adao, Kolesár, and Morales 2019 who find that, in general, β1 will not be a convex
combination of heterogeneous treatment effects. The focus on an estimand arising
from unit shifts in {Xs}s seems a natural choice of estimand because it implies a
change in exposure of

∑
swis ≤ 1. When the latter holds with equality for all i, we

can treat such an estimand as the effect of a unit shift in the value of the exposure
vector X in the outcome equation (4). The proof of the first part of Proposition 3.1
in Appendix A.2 shows that if the weights sum to 1, then we must necessarily have
both negative and positive weights. It is also possible, however, that the weights
are all negative or all positive, or a combination of both. In the absence of constant
treatment effects, it is unclear how β can be informative for the set {∂Yi(x)/∂xs}i,s.
While we are unable to obtain a convex combination of heterogenous treatment
effects with misspecified empirical specifications, it should be noted that models
that admit observable sufficient statistics assume constant effects; the problem of
obtaining a convex combination of heterogeneous effects persists.
A more appropriate term for β would be, what the interference literature calls, ex-
posure effect4. However, our mapping T̃i = T̃ (i, G, {Xs}Ss=1) =

∑
j ̸=iGij

∑
swjsXs

is a function of the vector of common shocks instead of an n-vector of treatment
assignments, and doesn’t contrast conditional averages of the outcome. In that
literature, it has been shown5 that, with misspecified exposure mappings, the ex-
posure effect is not necessarily a causal estimand.

4Which unfortunately conflicts with our terminology in this paper.
5For example, in the paper Leung 2024
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4 Asymptotic Properties

We now discuss large sample properties of the OLS estimator of β = (β1, β2). The
first observation is that we have spatial dependence in the observations in the
sense of dependence between the elements of the vector (Y1, ..., Yn). One might
suspect that this dependence in the outcome is due to locations receiving the same
common shock, but it remains the case that if we analyze the behavior of Yi|(X =

x) where X = (X1, ..., Xn), then locations will exhibit spatial dependence. Indeed,
if we condition on the set {(X1, ...,XS) : X = x}, the conditional projection error
in (4) is defined as

εi|(F, X = x) = Yi − β1xi − β2

n∑
j ̸=i

Gijxj

= Yi(0) +
S∑
s=1

wis (ψis − β1)︸ ︷︷ ︸
T.E. het. misspec.

X(x)
s +

n∑
j ̸=i

S∑
s=1

wjs (ψijs − β2Gij)︸ ︷︷ ︸
G.E. effect misspec.

X(x)
s

(13)

Similar to Adao, Kolesár, and Morales 2019 the statistical properties of the regres-
sion residual εi depend on potential outcomes Yi(0), the shifters {Xs}s, and the
shares {wis}s and parameters {ψis}s. However, when allowing for general equi-
librium effects, we now have dependence on parameters {ψijs}js and all neighbor
shares {wjs}n,Sj,s . Whereas in Adao, Kolesár, and Morales 2019 two locations with
similar exposure could have correlated residuals, in our setting we have a richer
correlation structure due to the third term. Even if Gij = 0 for a given j, there
could still be correlation between εi and εj due to {ψijs}s which reflects general
equilibrium interactions6. We can decompose the error into three terms: (i) the
contribution of other shocks through Yi(0) (ii) the contribution due to misspecifi-
cation of treatment effect heterogeneity, ψis − β1 (iii) the contribution due to mis-

6In a social interactions model with only exogenous effects, (Yi, Xi) can be treated as indepen-
dent from (Yj , Xj) when Gij = 0. This isn’t the case in our setting because of general equilibrium
interactions.
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specification of general equilibrium effects, ψijs−β2Gij . The first two were shown
in Adao, Kolesár, and Morales 2019 – although the misspecification of treatment
effect heterogeneity is more serious here due to higher order equilibrium effects.
Suppose we assumed unobservable treatment effect heterogeneity, but with a di-
rect treatment effect that is constant conditional on the observable weights. Then
εi|(X = x) = Yi(0)+αxi+

∑
j ̸=iwjs(ψijs−β2Gij)X

(x)
s where α = ψ−β1. It also fol-

lows that in general, E[εi|F, X] ̸= 0, or even unconditionally E[εi|X] ̸= 0. Recall
that βij is the sum of m-th order effects κmP (m)

ij , which in turn are the sums of the
products ρt0i,am−1

· ··ρt0a2,a1ρ
t0
a1,j

∝
(
∂Di/∂ logwam−1

)
· ··(∂Da2/∂ logwa1) (∂Da1/∂ logwj)

for indices {a1, a2, ..., am−1} and m ≥ 2. Limiting misspecification in the error εi
amounts to limiting the growth rate of this sum across m. Furthermore, locations
with similar shares and similar GE effects will form clusters, although clustering
on this unobserved heterogeneity is infeasible.
We strengthen our assumption on the dependence structure of the common shocks
and consider an asymptotic framework with S → ∞. Using diverging sector
sizes as the index for our asymptotic framework has been used in the shift-share
literature by Borusyak, Hull, and Jaravel 2022 and Adao, Kolesár, and Morales
2019 to deal with non-iid variables that are dependent across locations. In our
setting, the extent of dependence is greater due to equilibrium effects creating es-
sentially one cluster. Using large-S asymptotics with independence across sectors
will allow us to keep network dependencies between locations, while allowing
for a tractable framework due to forming independent groups using sector labels.
First, let ns ≡

∑n
i=1wis be the size of sector s in the population, and let D denote

the data.

Assumption 4.1. (Restrictions on D)
(i) Conditional on the set F, the common shocks {XSs}Ss=1 form an independent trian-
gular array (ii) For some η ∈ (0, 1], E[|X2

Ss|1+η|F] is uniformly bounded across S (iii)
lim supS→∞max≤s≤S ns < ∞ (iv) lim infS→∞mins≤S ns > 0 (v) n−1E[

∑n
i Z

2
ni|F] →

QZ > 0 (vi) n−1E[
∑n

i=1X
2
i |F] → QX > 0

(vii)
∑S

s=1

(∑n
i=1

∑n
j ̸=iGijwjs

)1+η
= o (n1+η) for η ∈ (0, 1].
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Assumption 4.1(ii) will be satisfied in settings where we think of the shocks
as productivity shocks in locations with a regular geography. Assumption 4.1(iii)
has the implication that n → ∞. Indeed, we know

∑S
s=1 ns ≤ n which implies

maxs ns/
∑S

t=1 nt ≥ maxs ns/n. Suppose n is fixed as S → ∞. Under the as-
sumption, ns is arbitrarily small for all s ≤ S, which is a degenerate problem
because the regressors Xi, Zni will be arbitrarily small for all i, which threatens
identification of the estimands (Assumption 3.1(iii)) in the limit. So we in fact
have n = n(S). Assumptions 4.1(iii) and (iv) together imply that n and S are
of the the same order when

∑
s ns and n are of the same order, which we as-

sume because
∑

s ns = n whenever
∑

swis = 1. Assumption 4.1(iii) implies
that the maximum sector is eventually bounded: there exists S̄ such that for
all S ≥ S̄, maxs≤S ns < C̄ for some finite C̄. Together with (iv), there are fi-
nite constants C, C̄ such that all sectors are eventually bounded by these con-
stants. Part (vii) imposes a restriction on the regressor Zn, and in particular, the
moments of Z ′

nZn in terms of its rate of growth. For example, when η = 0 so
that we only require two moments for the shocks, this assumption states that∑S

s=1

∑n
i=1

∑n
j ̸=iGijwjs = o(n) which implies E[n−1Z ′

nZn|F] → 0 and n−1Z ′
nZn →p

0. With η = 1, which assumes four moments for the regressor Zn, we allow for
the expected value to be order n, but have E[(n−1Z ′

nZn)
2|F] → 0. The case with

η > 0 falls in between, so is weaker than the case with η = 0 but stronger than
η = 1. Nonetheless, we may think of bounds absent our assumption: using

the cr-inequality,
(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)1+η
≤ nη

∑n
i=1

(
n−1

∑n
j ̸=iGijwjs

)1+η
=

nη
∑n

i=1

(
(ns/n)

∑n
j=1Gijwjs/ns

)1+η
. Using Jensen’s inequality for convex func-

tions, the latter term is less than or equal to nη
∑n

i=1

∑n
j=1(wjs/ns) (Gijns/n)

1+η =

(nηs/n)
∑n

i=1

∑n
j=1wjsG

1+η
ij . Using

∑
swis ≤ 1 for each i we have∑

s

(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)1+η
≤ (maxs ns)n

−1
∑n

i=1

∑n
j=iG

1+η
ij ≤ maxs ns. We

conclude that
∑

s

(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)1+η
is bounded above by a constant, and

possibly diverges depending on the assumption we make on maxs ns; Part (iv)
bounds the maximum sector size.
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Example 4.1. Restrictions on Zn are restrictions on the interactions between network
dependence and sector weights. Suppose we allow for any weight matrix W. Then one
example in which Part (viii) is satisfied is when all interactions happen with neighbors
to the left: Gi,j = 1[j = i − 1] and G1,n = 1, which is a sparse network. Then Yi =

β1Xi + β2Xi−1 + εi, and∑
s

(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)1+η
=
∑

s (n
−1ns)

1+η ≤ (n−1
∑

s ns) (maxs ns/n)
η → 0.

Example 4.2. Let S < n and suppose that for i = 1, ..., S wis = 1[s = i], i.e. the first S
locations specialize in a single sector, which corresponds to a sparse weight matrix W. We
impose no restriction on the remaining n− S locations. Then

S∑
s=1

(
n−1

n∑
i=1

n∑
j ̸=i

Gijwjs

)1+η

=
S∑
s=1

(
n−1

n∑
i ̸=s

Gis + n−1

n∑
i=1

n∑
j=S+1

Gijwjs

)1+η

≤ 2
S∑
s=1

(
n−1

n∑
i ̸=s

Gis

)1+η

+ 2
S∑
s=1

(
n−1

n∑
i=1

n∑
j=S+1

Gijwjs

)1+η

≤ 2n−1

n∑
i=1

S∑
s=1

Gis(max
i≤n

Gis)
η + 2n−1

n∑
i=1

S∑
s=1

(
n∑

j=S+1

Gijwjs

)1+η

.

Suppose that Gij = 1/(n − 1)1[j ̸= i] for all j ̸= i so that there is uniformity in
the network and location i’s outcome Yi depends on average exposure: Yi = β1Xi +

β2
1

n−1

∑n
j ̸=iXj + εi. Then both terms converge to zero and Assumption 4.1(viii) would

be satisfied.

Example 4.3. Suppose (wis)Ss=1 ∼ Dir(1/S, ..., 1/S) and Yi = β1Xi+β2
1

n−1

∑n
j ̸=iXj+

εi. We draw the vector of sector weights i.i.d across locations. Figure 1 shows the dis-
tribution of these weights for a given i, as well as a realization of sector sizes from its
distribution. In this example, weights are not degenerate at 0 or 1, but contain sufficient
sparsity to satisfy our assumption given a uniform interactions matrix G.
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(a) Distribution of sector weights (b) Distribution of sector sizes

Figure 1: Example satisfying sparsity of GW

4.1 Consistency

Having defined our estimands in the previous section, we turn to the question of
what restrictions on the model M we can impose in order for our estimators to
perform well, in the sense of being ‘correct’ in large samples. Recall that unlike in
standard linear models where the estimands β1, β2 are fixed constants, our prob-
lem is one in which they are indexed by (n, S) (or more precisely, by S). While this
changes how we define consistency – it is now defined as β̂ − β(S) →p 0 instead
of β̂ →p β – the intuition remains the same: when (n, S) is large, our estimand
β(n,S) characterizes the parameter of interest that is relevant to the population of n
locations and S sectors, and our estimator β̂ will be close to this value in a proba-
bilistic sense.
Let Wi = (Xi, Zni) so that β̂ − β = (W ′W )−1W ′ε.

Assumption 4.2. (Restrictions on M)
(i) |Yi(0)| ≤ Cy for some Cy > 0 and for all i (ii) For all s ≤ S, and all i, |ψis −
β
(S)
1 | ≤ Cψ,1 for some Cψ,1 > 0 (iii) |ψijs − β

(S)
2 Gij| < Cψ,2 for some Cψ,2 > 0 (iv)∑n

i=1

∑n
j ̸=imaxs≤S |ψijs − β

(S)
2 Gij| = o(n) (v) |β(S)

1 |, |β(S)
2 | ≤ Cβ for some Cβ > 0.

In contrast to Assumption 4.1 which imposes restrictions on the data, Assump-
tion 4.2 are assumptions on the primitives of the structural model M. These are
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strong assumptions that are needed for consistency when the only sources of ran-
domness are the common shocks {Xs}s. Part (i) imposes bounded potential out-
come Yi(0) and we could relax this to uniformly bounded first and second mo-
ments if we allow for a setting with additional shocks. Part (ii) bounds treat-
ment effect misspecification; The same assumption is made in Adao, Kolesár, and
Morales 2019. It allows for non-negligible total misspecification in the limit in the
sense of lim infS→∞

∑S
s=1

∑n
i=1 |ψis − β

(S)
1 | > 0. Part (iii) and (iv) restricts G.E ef-

fects. Part (iii) assumes bounded support while (iv) restricts its rate of growth. In
particular, it implies that average misspecification error should be zero, and that
in each location, the minimum pairwise G.E. effect is captured by first-order ob-
servables {Gij}j ̸=i. To see this, we can show that given (i, s), and for any ϵ > 0,
a
(i)
Ss = minj ̸=i |ψijs−β(S)

2 Gij| is such that 0 < a
(i)
Ss < ϵ for all i ≤ n(S) for S sufficiently

large. Therefore, limS→∞ a
(i)
Ss = 0 exists for each (i, s) pair; that is, the minimum

pairwise G.E. effect is captured by the observable interaction matrix. Nonethe-
less, we still allow for non-neglible G.E. effect misspecification in the limit with
the caveat that they do not grow too fast in the sense of the total misspecification
error in each sector increasing at a slower rate than n. While the misspecifica-
tion error must diverge slower than the sample size, in terms of restrictions on
the primitives of the model M(θ), we can allow for total G.E. effects to increase at
the rate of the sample:

∑n
i=1

∑n
j ̸=i |ψijs| = O(n). Papers that have used regression

(4) acknowledge the interference channel, but cluster locations into groups which
has the benefit of allowing for arbitrary equilibrium interactions within clusters,
but at the cost of needing to assume zero effects outside the cluster. Our assump-
tions instead allow for more general interactions among locations, but requires
restricting their magnitudes and rate of growth.

Proposition 4.1. Under Assumption 4.1, Assumption 4.2 and Proposition A.1, (i) β̂ −
β(S) = op(1), with β

(S)
1 =

∑n
i=1

∑S
s=1 λis

∂Yi(x)
∂xs

and β
(S)
2 =

∑n
i=1

∑S
s=1 λ̃is

∂Yi(x)
∂xs

and
weights given in Proposition 3.1.

Recall from Section 2 that ψijs = −βij(σ − 1)
∑N

k=1 r
t0
jk,sx

t0
Fk,s for j = 1, ..., n

where βij captures the G.E. effects and is the sum of all higher-order effects be-
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tween i and j in the sense of how changes in wages in j result in changes in
excess demand in i. For |ψijs − β2Gij| → 0, we would need |βij| to be such
that the sum of all effects

∑∞
m=2 κ

mP
(m)
ij → 0, with P

(m)
ij the transmission using

m − 1 neighbors. Since |ψijs| ≤ (σ − 1)|βij|, we can state a sufficient condition
as: n−1

∑n
i=1

∑n
j ̸= |βij| ≤ C∗. The terms βij is a function of

∑∞
m=1 κ

mP
(m)
ij where

0 < κ < 1 and κmP
(m)
ij = κm

∑n
am−1=1

∑n
am−2=1 · · ·

∑n
a1=1 ρ

t0
i,am−1

· · · ρt0a2,a1ρ
t0
a1,j

and∑n
j=1 ρ

t0
ij < κ−1 for all n, so it must be that as n → ∞, ρt0ij → 0. Suppose ρt0ij ≤ Cρ

uniformly in (i, j, n). Then |βij| ≤ κCρ + κ limR→∞
∑R

m=2C
m−1
ρ . If Cρ ∈ (0, 1), the

latter geometric series converges, say to C̃ρ, and |βij| ≤ 2κC̃ρ uniformly in (i, j, n).
To think about when this could occur, suppose location i was specialized in sector
1, wi1 = 1 and suppose that each other location was equally important in its initial
revenue in sector 1. Let N = n+ 1. We can show that ρt0ij =

(1+ϕ)
N

+ (σ−1)
N

∑N
k=1 x

t0
jk,1

where
∑N

k=1 x
t0
jk,1 measures j’s importance in sector 1, with xt0jk,1 ∈ (0, 1). The first

term will converge to zero for large N , and the second term will be less than 1
when

∑N
k=1 x

t0
jk,1 <

1
σ−1

N .

4.2 Inference

We now turn to the problem of developing a distribution theory for the OLS esti-
mators of β1, β2 in order to do hypothesis testing and construct confidence inter-
vals with asymptotically correct coverage that accounts for equilibrium interac-
tions between locations. Our inference methods will be valid conditionally, and
therefore, also valid unconditionally in the sense of being valid for any joint dis-
tribution of sample characteristics {Yi(0), (wis)Ss=1, (ψijs)

n,S
j=1,s=1}ni=1. However, the

price paid will be stronger conditions than is likely necessary, and one might for
example be able to relax the restriction on the rate of growth of the misspecifica-
tion errors by adopting an unconditional approach, although such an approach
will need to be motivated by structural arguments that explain what the underly-
ing causes are that give rise to randomness in equilibrium interactions. We begin
with the following assumptions:

Assumption 4.3. (Restrictions on D) (i) For some η > 0 E[|XSs|4+η|F] is uniformly
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bounded across (S, s) (ii)
∑S

s=1

(∑n
i=1

∑n
j ̸=iGijwjs

)2
= O(n) (iii) For some η > 0,∑S

s=1

(∑n
i=1

∑n
j ̸=iGijwjs

)2+η
= o(n(2+η)/2).

Assumption 4.4. (Restrictions on M) (i)
∑n

i=1

∑n
j ̸=imaxs≤S |ψijs − β

(S)
2 Gij| = o(

√
n)

Assumptions 4.3 and 4.4 and strengthen requirements on the data and on the
model M from those previously. Part (4.3i) assumes moments greater than four
for the common sector shocks, which is similar to what one would find in lin-
ear regression models with fixed regressors. Part (4.4i) requires a slower rate of
divergence for the total misspecification error, although still allowing for valid in-
ference with non-negligible misspecification. The rate of growth allowed for the
primitive equilibrium effects remains the same,

∑n
i=1

∑n
j ̸=i |ψijs| = O(n) for each s,

but now these effects are better approximated by the observable interactions ma-
trix. Interestingly, we do not require any additional restrictions on treatment effect
heterogeneity misspecification, and it can remain fixed as we move along the se-
quence of finite population models. Part (4.3ii) and (4.3iii) restrict features of the
regressor Zn. Indeed, (iii) strengthens Assumption 4.1(viii) for the case η = 1,
which previously only required this term be o(n2). We require order n in order to
scale β̂−β by a common factor rS =

√
n(S) and obtain a variance-stabilizing trans-

formation. Notice that by definition n−1
∑n

i=1

∑n
j ̸=iGijwjs ≤ 1 and we previously

assumed this term converges to zero, we now have n−1/2
∑n

i=1

∑n
j ̸=iGijwjs → 0.

Such a condition may arise from a sparser network structure. Part (iv) is anal-
ogous to Assumption 4.1(viii) but for powers beyond 2, and now with a stricter
requirement that the terms diverge slower than n(2+η)/2 instead of n2+η. Together
with Part (ii), it is analogous to those of the previous section in which η = 0 was
the knife-edge case and of order n; here η = 0 corresponds to the second power.

Theorem 4.1. Let S denote the number of sectors and n = n(S) the number of locations
in our sample. Let Wn,i = (Xi,

∑n
j ̸=iGijXj)

′. Under Assumptions 4.1 and Assumptions
4.3, 4.4, and Proposition A.2,

√
nV

−1/2
n (W ′

nWn/n)(β̂ − β(S)) = N(0, I) + op(1), where
Vn := var

(
1√
n

∑n
i=1Wn,iεi|F

)
.
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Remark 4.1. (Normalizing sequence) Recall that in our asymptotic framework, n =

n(S). Under our assumptions, we could scale our sequence using the total number of sec-

tors,
√
S, the sum of squared sector sizes,

√∑S
s=1 n

2
s, or

√∑S
s=1

(∑n
i=1

∑n
j ̸=iGijwjs

)2
.

The performance of these different scaling sequences in terms of finite sample coverage
depend on the specific case, but each will be asymptotically valid.

Theorem 4.1 establishes joint convergence of the least squares estimator, so that
(W ′W/n)−1V̂n(W

′W/n)−1 is an estimator of the asymptotic variance of
√
n(β̂ −

β) where V̂n satisfies V̂n − Vn ≥ op(1), which allows for potentially conservative
inference. Since ϵ is a function of primitives, we use OLS residuals, ϵ̂. Observe that
Vn = 1√

n

∑n
i=1Wn,iεi =

1√
n

∑S
s=1RsXs where Rs :=

∑n
i=1Wniεi is a 2 × 1 random

vector. Since εi = εi(X1, ...,XS), the random vectors {RsXs}Ss=1 are dependent. So
we need an estimator for

Vn = n−1

S∑
s=1

E[RsR
′
sX

2
s |F]− n−1

S∑
s=1

E[RsXs|F]E[(RsXs)
′|F]

+ n−1
∑
s ̸=t

Cov(RsXs, RtXt|F),

where an estimator for the first term in the scalar case with no cross-unit inter-
actions, n−1

∑S
s=1R

2
sX

2
s gives a conservative estimator as in Adao, Kolesár, and

Morales 2019.

5 Conclusion

With heterogeneity between locations in response to common trade shocks and an
infeasible representation of the data generating process in terms of a set of observ-
able sufficient statistics, we can instead incorporate interference into regressions.
In this paper, we present a statistical theory for the estimators of the linear models
to achieve consistency when misspecification errors of the regression for the DGP
are non-negligible, which also hints to directions of failure of the OLS estimator in
these equilibrium settings. Our theory provides conditions for inference on these
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pseudo-true estimands; importantly, we allow for one cluster of locations exhibit-
ing network dependence, but require that on average, misspecification errors are
zero. An interesting avenue for future work involves providing necessary condi-
tions for consistency of the OLS estimators when equilibrium effects are present.
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A Proofs

A.1 Proofs for Section 2

1. Derivation of reduced-form of M(θ): Let Rt0 = diag(Rt0
1 , ..., R

t0
n ) be the matrix

of initial revenues for locations and let Xij,s = xij,sγsWj define bilateral sales
from i to j in sector s. We have

∂Di(ω)

∂ logχs
= −(σ − 1)

N∑
j=1

Xij,sxFj,s (14)

∂Di(ω)

∂ logAs
= (σ − 1)

N∑
j=1

Xij,s(1− xFj,s) (15)

∂Di(ω)

∂ log Ãjs
= (σ − 1)Xij,s(1[j=i] − xjj,s) (16)

∂Di(ω)

∂ logωj
= (1 + ϕ)

S∑
s=1

Xij,s + (σ − 1)
N∑
k=1

S∑
s=1

Xik,sxjk,s (17)

∂Di(ω)

∂ logωi
= (1− σ)

N∑
j=1

S∑
s=1

Xij,s + (1 + ϕ)
S∑
s=1

Xii,s + (σ − 1)
N∑
k=1

S∑
s=1

Xik,sxik,s − (1 + ϕ)viω
1+ϕ
i .

(18)

If we normalize byRt0
i , define rt0ij,s ≡ X t0

ij,s/
∑

dX
t0
id,s as j’s share in i’s revenue

in sector s, and let lt0i,s ≡
∑

dX
t0
id,s/R

t0
i denote the share of sector s in total
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revenue, which is also equal to the share of labor in sector s, we get

1

Rt0
i

∂Di(ω
t0)

∂ logχs
= −(σ − 1)lt0i,s

N∑
j=1

rt0ij,sx
t0
Fj,s (19)

1

Rt0
i

∂Di(ω
t0)

∂ logAs
= (σ − 1)lt0i,s

N∑
j=1

rt0ij,s(1− xt0Fj,s) (20)

1

Rt0
i

∂Di(ω
t0)

∂ log Ãjs
= (σ − 1)lt0i,sr

t0
ij,s(1[j=i] − xjj,s) (21)

1

Rt0
i

∂Di(ω
t0)

∂ logωj
= (1 + ϕ)

S∑
s=1

lt0i,sr
t0
ij,s + (σ − 1)

S∑
s=1

lt0i,s

N∑
k=1

rik,sxjk,s (22)

1

Rt0
i

∂Di(ω
t0)

∂ logωi
= (1− σ) + (1 + ϕ)

S∑
s=1

lt0i,sr
t0
ii,s + (σ − 1)

S∑
s=1

lt0i,s

N∑
k=1

rt0ik,sx
t0
ik,s − (1 + ϕ).

(23)

We now discuss invertibility of B ≡ −(Rt0)−1∇logωD(ωt0 |τ, At0 , Ãt0 , χt0 ; θ).
We first write Bij ≡ −(1/Rt0

i ) · ∂Di(ω
t0)/∂ logωj = (σ + ϕ)1[j=i] − ρt0ij where

ρt0ij > 0 is given by ρt0ij = (1 + ϕ)
∑S

s=1 l
t0
i,sr

t0
ij,s + (σ − 1)

∑S
s=1 l

t0
i,s

∑N
k=1 r

t0
ik,sx

t0
jk,s.

For a pair of locations (i, j), we can write ρt0ij as a sum of a direct interaction
between i and j, and another term that represents how i interacts with a
region k and how j interacts with k. A sufficient condition for nonsingularity
is diagonal dominance: |Bii| >

∑n
j ̸=i |Bij| which has interpretation that the

effect of a wage change in own-market in partial equilibrium is greater than
the sum of the cross-effects from other markets. Rewrite B = K(In − κP )

where K = (σ + ϕ), κ = 1/K ∈ (0, 0.5), and Pij ≡ ρt0ij .

Proof of Proposition 2.1. We first show In − κP is diagonally dominant. We show
that

|1− ρii/K| −
n∑
j ̸=i

|ρij/K| = 1− ρii/K −
n∑
j ̸=i

ρij/K.
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The terms in the summation follow from ρij > 0 for all i, j. Consider

1− ρii/K = 1− 1

σ + ϕ

(
(1 + ϕ)

S∑
s=1

lt0i,sr
t0
ii,s + (σ − 1)

S∑
s=1

lt0i,s

N∑
k=1

rt0ik,sx
t0
ik,s

)
≥ 1− 1

σ + ϕ
((1 + ϕ) · 1 + (σ − 1) · 1)

= 0,

since we can bound the terms in the summation above by 1, and σ+ϕ > 0. There-
fore, we can drop the absolute value notation. We can rewrite the difference now
as

1− 1 + ϕ

σ + ϕ

S∑
s=1

lt0i,s

(
rt0ii,s +

n∑
j ̸=i

rt0ij,s

)
− σ − 1

σ + ϕ

S∑
s=1

lt0i,s

N∑
k=1

rt0ik,s

(
xt0ik,s +

n∑
j ̸=i

xt0jk,s

)
.

Notice that the terms in the first parenthesis is equal to 1 − rt0iF,s and similarly the
terms in the second parenthesis equal 1 − xt0Fk,s. Using the fact that

∑N
k=1 r

t0
ik,s = 1

and
∑S

s=1 l
t0
i,s ≤ 1 we have that

|1 + ρii/K| −
n∑
j ̸=i

|ρij/K| ≥ 1− 1 + ϕ

σ + ϕ
· 1− σ − 1

σ + ϕ
· 1 +

(
1 + ϕ

σ + ϕ

) S∑
s=1

lt0i,sr
t0
iF,s

+

(
σ − 1

σ + ϕ

) S∑
s=1

lt0i,s

N∑
k=1

rt0ik,sx
t0
Fk,s

> 0.

We conclude that In − κP is diagonally dominant.
Furthermore, since |κ| = κ < 1 it follows that (In−κP )−1 =

∑∞
m=1 κ

mPm if we can
prove that the maximum absolute eigenvalue of κP is bounded above by 1. We
have that ∀i

∑n
j=1 ρij = (1+ϕ)

∑S
s=1 l

t0
i,s

∑n
j=1 r

t0
ij,s+(σ−1)

∑S
s=1 l

t0
i,s

∑N
k=1 r

t0
ik,s

∑n
j=1 x

t0
jk,s.

Recall that
∑n

j=1 r
t0
ij,s = 1 − rt0iF,s < 1 and

∑n
j=1 x

t0
jk,s = 1 − xt0Fk,s < 1 and both im-

ply that
∑n

j=1 ρ
t0
ij < K and so

∑n
j=1 κρ

t0
ij < 1. Since κP is a positive matrix, the

Perron-Frobenius eigenvalue satisfies 0 < mini
∑

j κρ
t0
ij ≤ λ ≤ maxj

∑
j κρ

t0
ij < 1.

31



Therefore, |λi| < 1 ∀i = 1, ..., Nc so the growth of (κP )m is controlled in the sense
of
∑∞

m=0 κ
mPm = (In − κP )−1 is well-defined and limm→∞ κmPm = 0.

Proof of Proposition 2.2.

ω̂i(χ̂1, ..., χ̂S) =
n∑
j=1

βij

(∑
k,s

1

Rt0
j

∂Dj(ω
t0)

∂ log Ãks

)
ˆ̃Aks +

n∑
j=1

βij

(∑
s

1

Rt0
j

∂Dj(ω
t0)

∂ logAs

)
Âs

+
n∑
j=1

βij

(∑
s

1

Rt0
j

∂Dj(ω
t0)

∂ logχs

)
χ̂s

(24)

is well-defined, so we can now substitute in the expressions for the derivatives
given in (19)-(23).

A.2 Proofs for Section 3

Proof of Proposition 3.1. The expression for the projection coefficient in a model
with multiple regressors is β1 =

∑n
i=1E[ẌniYi|F]/

∑n
i=1E[Ẍ

2
ni|F] and similarly

for β2. Using Equation 8 we get

β1 =

∑n
i=1E[ẌniYi(0)|F]∑n

i=1E[Ẍ
2
ni|F]

+

∑n
i=1E[Ẍni

∑S
s=1wisψisXs|F]∑n

i=1E[Ẍ
2
ni|F]

+

∑n
i=1E[Ẍni

∑n
j ̸=i
∑S

s=1wjsψijsXs|F]∑n
i=1E[Ẍ

2
ni|F]

.

(25)

Observe that

S∑
s=1

n∑
i=1

λ
(n)
is =

S∑
s=1

n∑
i=1

var(Xs|F)∑n
i=1E[Ẍ

2
ni|F]

(
wis − δ

n∑
j ̸=i

Gijwjs

)
, (26)

where δ > 0. The case with δ = 0 corresponds to the weights obtained by
Adao, Kolesár, and Morales 2019. Unlike them, the weights above may be neg-
ative depending on the signs and magnitudes of {wis − δ

∑n
j ̸=iGijwjs}ni=1, each

of which belongs to the interval (−δ, 1). Furthermore, the weights can only sum
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to 1 if
∑

i

∑
sE
[
ẌniXs

]
−
∑

iE
[
Ẍ2
ni

]
= 0, i.e.

∑
i

∑
s(wis − δ

∑
j ̸=iGijwjs)σ

2
s =∑

i

∑
s(wis−δ

∑
j ̸=iGijwjs)

2σ2
s . The RHS is positive. Suppose thatwis−δ

∑n
j ̸=iGijwjs >

0 for all i, s. Then we have
∑

i,s(wis−δ
∑

j ̸=iGijwjs)σ
2
s [1−(wis−δ

∑
j ̸=iGijwjs)] = 0.

However, each term in parentheses is strictly positive, so this equality cannot hold.
Suppose that wis − δ

∑n
j ̸=iGijwjs < 0 for all i, s. We again immediately get a con-

tradiction. Thus, it must be that for the weights to sum to 1, there exists i, s such
that wis − δ

∑n
j ̸=iGijwjs is positive, and others for which it is negative. However,

this implies that that some of the weights will be negative, and so β1 cannot be a
convex combination of the treatment effects.
Suppose that for some c > 0 we have

∑
i,s λis = −c. We can rewrite this as re-

quiring
∑

i,s(wis − δ
∑

j ̸=iGijwjs)σ
2
s [1 + c(wis − δ

∑
j ̸=iGijwjs)] = 0. Clearly, we

cannot have wis − δ
∑

j ̸=iGijwjs > 0 for all (i, s), which is just to say that we
cannot have λis > 0 for all (i, s), which is vacuous given the summation equals
−c. Suppose wis − δ

∑
j ̸=iGijwjs < 0 for all (i, s), i.e. λis < 0 for all (i, s). The

first case is when there exists (i, s) such that 1 + c(wis − δ
∑

j ̸=iGijwjs) = 0 which
implies wis − δ

∑
j ̸=iGijwjs = −1/c for any c > 1/δ. If this previous condition

does not hold for each i and each s, we need that there exists (i, s) such that
0 < 1 + c(wis − δ

∑
j ̸=iGijwjs) < 1 and (i′, s′) such that 1 − δc < 1 + c(wi′s′ −

δ
∑

j ̸=i′ Gi′jwjs′) < 0. Combining these, we get −δ < wi′s′ − δ
∑

j ̸=i′ Gi′jwjs′ <

−1/c < wis − δ
∑

j ̸=iGijwjs < 0 with c > 1/δ. When
∑

i,s λis = c, c ̸= 1, we
can show that we can have λis > 0 for all (i, s) but there must exist (i, s) with
0 < wis− δ

∑
j ̸=iGijwjs < 1/c and (i′, s′) with 1/c < wi′s′ − δ

∑
j ̸=i′ Gi′jwjs′ < 1 with

c > 1. Both arguments with positive and negative sums, as well as sums equal to
one, imply that for values of c ∈ [−1/δ, 1] we must necessarily have both positive
and negative weights. It is also possible to show that we have a mixture of both
positive and negative weights when, for example, c > 1 so that the existence c > 1

does not allow us to infer that all weights are positive.
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Finally, we may also represent β1 as:

β1 =
n∑
i=1

E

[
Ẍni

E[Ẍ ′
nẌn|F]

(
S∑
s=1

wisψisXs +
n∑
j ̸=i

wjsψijsXs

)
F

]

=
n∑
i=1

E[λ(n)i (Yi(X1, ...,XS)− Yi(0))|F],

with location weights λ(n)i = Ẍni/E[Ẍ ′
nẌn|F] satsifying E[λ(n)i |F] = 0.

A.3 Proofs for Section 4

We first show that W ′W converges to a positive definite matrix.

Proposition A.1. Under Assumption 4.1, W ′W > 0.

1. claim: Z ′
nZn = Op(n). Let θst =

∑n
i=1

∑n
j ̸=i
∑n

k ̸=iGijGikwjswkt so that Z ′
nZn =∑S

s=1 θssX
2
s +

∑
s<t(θst + θts)XsXt. Consider the expectation of the absolute

value of the first term:

E

[
S∑
s=1

θssX
2
s F

]
= E

[
S∑
s=1

θssX
2
s F

]
= C

∑
s

θss,

≤
∑
s

n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

GijGikwks,

≤
n∑
i=1

n∑
k ̸=i

Gik,

= n,

where the second line uses uniformly bounded second moment implied
from Assumption 4.1(ii), the third line uses wjs ≤ 1, and the fourth line uses∑

swks ≤ 1 and
∑n

j ̸=iGij = 1. For a sequence of random variables {AS}∞S=1,
we know that E[|AS|α] = O(nS) implies AS = Op(n

1/α
S ), so it follows that
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∑
s θssX

2
s = Op(n).

Consider the variance of the second term which satisfies

var

(∑
s<t

(θst + θts)XsXt F

)
≤ C2

S∑
s,t=1

n∑
i,i′=1

∑
j,k ̸=i

∑
j;,k′ ̸=i′

GijGikGi′j′Gi′k′(wjswktwj′swk′t

+ wjswktwj′twk′s + wjtwkswj′swk′t + wjtwkswj′twk′s).

For each of the four terms above, we will remove the t index as well as using
that weights wit ≤ 1 and

∑
j ̸=iGij = 1. The four terms will then be less than

∑
s

n∑
i,i′

∑
j,j′ ̸=i,i′

GijGi′j′wjswj′s +
∑
s

n∑
i,i′

∑
j,k′ ̸=i,i′

GijGi′k′wjswk′s +
∑
s

n∑
i,i′

∑
k,j′ ̸=i,i′

GikGi′j′wkswj′s

+
∑
s

n∑
i,i′

∑
k,k′ ̸=i,i′

GikGi′k′wkswk′s,

which in turn can be bounded above by

n∑
i,i′=1

∑
j,j′ ̸=i,i′

GijGi′j′ +
n∑

i,i′=1

∑
j,k′ ̸=i,i′

GijGi′k′ +
n∑

i,i′=1

∑
k,j′ ̸=i,i′

GikGi′j′ +
n∑

i,i′=1

∑
k,k′ ̸=i,i′

GikGi′k′ ,

each of which is less than n2. It follows that |
∑

s<t(θst + θts)XsXt| = Op(n)

and therefore Z ′
nZn = Op(n). Note that we can go further and appeal to

Assumption 4.1(viii) to conclude that this variance term is of order smaller
than n2.

2. claim: n−1Z ′
nX − E[n−1Z ′

nX|F] = op(1). The first term of this difference is∑
s

(∑
i

∑
j ̸=iGijwjswis

)
(X2

s − var(Xs|F)). By the Bahr-Esseen inequality

35



we have for some η ∈ (0, 1)

E

∣∣∣∣∣n−1

S∑
s=1

(
n∑
i=1

∑
j ̸=i

Gijwjswis

)
(X2

s − var(Xs|F))

∣∣∣∣∣
1+η

F


⪯ n−(1+η)

S∑
s=1

∣∣∣∣∣
n∑
i=1

n∑
j ̸=i

Gijwjswis

∣∣∣∣∣
1+η

≤ n−(1+η)

S∑
s=1

(n2
s)

1+η

≤
(
(maxs ns)

2

n

)η ∑
s ns
n

= o(1),

where the last line is due to Assumption 4.1(iv). Consider the variance of
second term of of this difference:

var

(∑
s<t

(
n∑
i=1

n∑
j ̸=i

Gijwjswit

)
XsXt F

)
≤ C2

S∑
s,t=1

n∑
i,i′=1

n∑
j,j′ ̸=i,i′

GijGi′j′wjswj′switwi′t,

≤ C2

S∑
t=1

(
n∑
i=1

n∑
i′=1

witwi′t

)

= O

(∑
t

n2
t

)
.

The arguments for the third term are identical. Therefore, the variance of
both terms are o(n2) implying that the terms are op(n) by Assumption 4.1(iii).
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Proof of Proposition A.1. Consider the first term, Z ′
nZn:

n∑
i=1

Z2
ni =

n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

S∑
s=1

S∑
t=1

GijGikwjswktXsXt

=
S∑
s=1

(
n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

GijGikwjswks

)
X2
s +

∑
s<t

(
n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

GijGik(wjswkt + wjtwks)

)
XsXt

=
S∑
s=1

θss(X
2
s − var(Xs|F)) +

∑
s<t

(θst + θts)XsXt +
S∑
s=1

θssvar(Xs|F)

(27)

where the second set of summations is a sum of (S − 1)S/2 terms and has expec-
tation zero conditional on F. We show in the appendix that this term is of order
n.
Consider the first term of (27). By Assumption 3.1 (vi) and the fact that |

∑
s θssX

2
s | =∑

s θssX
2
s it is Op(n). Using the von Bahr-Esseen inequality, we can show that

E [|n−1
∑

s θss(X
2
s − var(Xs|F))|1+η|F] ⪯

∑
s

(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)1+η
which con-

verges to zero by Assumption 4.1(viii). Next, we can show that var(n−1
∑

s<t θstXsXt|F) ⪯∑
s

(
n−1

∑n
i=1

∑n
j ̸=iGijwjs

)2
with each term in the parentheses between 0 and 1.

By Assumption 4.1(viii), the term on the right-hand side converges to zero, which
implies n−1

∑
s<t (θst + θts)XsXt = op(1). Therefore,

n−1

n∑
i=1

Z2
ni − n−1E

[
n∑
i=1

Z2
ni F

]
→p 0.
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Next, consider the term

n∑
i=1

ZniXi =
n∑
i=1

(
n∑
j ̸=i

S∑
s=1

GijwjsXs

)(
S∑
t=1

witXt

)

=
S∑
s=1

(
n∑
i=1

n∑
j ̸=i

Gijwjswis

)
X2
s +

∑
s<t

(
n∑
i=1

n∑
j ̸=i

Gij(wjswit + wjtwis)

)
XsXt.

(28)

The expectation of the first term is O (
∑

s ns). We show in the Appendix that the
variances of the second and third terms are of order O (

∑
s n

2
s) so by Assumption

4.1(iii) these terms are op(n) and conclude that n−1
∑n

i=1 ZniXi−E[n−1
∑n

i=1 ZniXi|F] =

op(1).

Proof of Proposition 4.1. Convergence requires proving W ′ε →p 0. Firstly, we have
E[W ′ε|F] = 0. To see this, observe that E[X ′ε|F] = E[(γZ ′

n + Ẍ ′
n)ε|F]. Further-

more, E[Ẍ ′ε|F] = E[Ẍ ′(Y −Xβ1 − Znβ2)|F] = −E[Ẍ ′Zn|F]δ − E[Ẍ ′Zn|F]β2 = 0

since E[Ẍ ′Zn|F] = 0. Therefore, E[X ′ε|F] = γE[Z ′
nε|F]. Likewise, E[Z ′

nε|F] =

δE[X ′ε|F]. Therefore, if 1 − δγ ̸= 0, then E[X ′ε|F] = E[Z ′
nε|F] = 0. This re-

striction is satisfied when the Cauchy-Schwarz inequality is strict: |E[X ′Zn|F]| <√
E[Z ′

nZn|F]E[X ′X|F], which will be true under Assumption 3.1(iii). We have

X ′ε =
∑
s

(
n∑
i=1

wisYi(0)

)
Xs +

∑
s,t

(
n∑
i=1

wiswit(ψit − β1)

)
XsXt

+
∑
s,t

(
n∑
i=1

wis

n∑
j ̸=i

wjt(ψijt − β2Gij)

)
XsXt.

(29)

The first term of (29) is conditionally mean zero with variance
∑

s

(∑
i,i′ wiswi′sYi(0)Yi′(0)

)
var(Xs|F)

which is of the same order as
∑

s n
2
s = o(n2) by Assumption 4.1(iii). Therefore, this

first term converges to zero after normalizing by n.
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Consider the second term of (29):

S∑
s=1

(
n∑
i=1

w2
is(ψis − β1)

)
X2
s+
∑
s<t

(
n∑
i=1

wiswit(ψit − β1)

)
XsXt+

∑
s<t

(
n∑
i=1

witwis(ψis − β1)

)
XsXt.

Let AS ⪯ BS denote AS = O(BS). If we focus on the first part, but demeaned, and
use the von Bahr-Esseen inequality with η < 1 we get

E

∣∣∣∣∣
S∑
s=1

(
n∑
i=1

w2
is(ψis − β1)

)
(X2

s − var(Xs|F))

∣∣∣∣∣
1+η

F

 ⪯
S∑
s=1

∣∣∣∣∣
n∑
i=1

w2
is(ψis − β1)

∣∣∣∣∣
1+η

≤
S∑
s=1

(
n∑
i=1

w2
is|ψis − β1|

)1+η

≤ C1+η
ψ

S∑
i=1

(
n∑
i=1

w2
is

)1+η

≤ C1+η
ψ (max

s
ns)

η

S∑
s=1

ns

= o(n1+η),

which implies that the demeaned term converges in probability to zero after nor-
malizing by n. The variance of the second part is

var

(∑
s<t

(
n∑
i=1

wiswit(ψit − β1)

)
XsXt F

)
⪯

S∑
s,t=1

(
n∑
i=1

wiswit(ψit − β1)

)2

=
S∑

s,t=1

n∑
i,i′=1

wiswitwi′swi′t(ψit − β1)(ψi′t − β1)

≤ C2
ψ

S∑
s,t=1

n∑
i,i′=1

wiswitwi′swi′t

⪯
∑
s

n2
s

= o(n2).
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The same arguments apply to the third part of the second term. Therefore, the nor-
malized second term converges to the limit of (

∑
s ns)

−1E
[∑S

s=1 (
∑n

i=1w
2
is(ψis − β1))X

2
s |F

]
.

Finally, consider the third term of (29):

S∑
s=1

(
n∑
i=1

wis

n∑
j ̸=i

wjs(ψijs − β2Gij)

)
X2
s +

∑
s<t

(
n∑
i=1

wis

n∑
j ̸=i

wjt(ψijt − β2Gij)

)
XsXt

+
∑
s<t

(
n∑
i=1

wit

n∑
j ̸=i

wjs(ψijs − β2Gij)

)
XsXt.

If we follow the same arguments as before and use the von Bahr-Esseen inequality
for demeaned first part, we get for η ∈ (0, 1)

E

∣∣∣∣∣
S∑
s=1

(
n∑
i=1

wis

n∑
j ̸=i

wjs(ψijs − β2Gij)

)
(X2

s − var(Xs|F))

∣∣∣∣∣
1+η

F


⪯
∑
s

(
n∑
i=1

wis

n∑
j ̸=i

wjs|ψijs − β2Gij|

)1+η

≤
∑
s

(
n∑
i=1

wisCi,ψ + |β(S)
2 |n2

s

)1+η

⪯
∑
s

n1+η
s

( n∑
i=1

w̃isCi,ψ

)1+η

+
(
|β(S)

2 |ns
)1+η

≤ (max
s
ns)

η

n∑
i=1

C1+η
i,ψ + 2ηC1+η

β

∑
s

(n2
s)

1+η

= o
(
n1+η

)
where the first line uses Assumption 4.1(ii), the second line uses the triangle in-
equality, the third line uses Loeve’s cr inequality, the fourth line uses Jensen’s
inequality for the weights w̃is = wis/ns and Assumption 4.2(iv) and (v), and
the last line follows from Assumption 4.1(iv) and Assumption 4.2(iv), together
with the Norm Monotonicity Inequality. To see this last point, we know that for
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0 < 1+r < 1+η andCi,ψ > 0,
(
n−(1+η)

∑n
i=1C

1+η
i,ψ

)1/(1+η) ≤ n−1
(∑n

i=1C
1+r
i,ψ

)1/(1+r)
=(

n−(1+r)
∑n

i=1C
1+r
i,ψ

)1/(1+r), the latter of which converges to zero for r = 0 un-
der Assumption 4.2(iv) while Assumption 4.1(iv) was important for bounding
lim supmaxns. Observe too that we need η > 0 in this proof, i.e 2+ η moments for
the shocks. Consider the variance of the second part (with an identical argument
for third part):

var

(∑
s<t

(
n∑
i=1

wis

n∑
j ̸=i

wjt(ψijt − β2Gij)

)
XsXt F

)
⪯

S∑
s,t=1

n∑
i,i′=1

n∑
j,j′ ̸=i,i′

wiswi′swjtwj′t(ψijt − β2Gij)(ψi′j′t − β2Gi′j′).

Unlike before, bounding the difference |ψijs−β2Gij| by a constant would not, on its
own, deliver us the result we need. Observe that β2

2

∑S
s,t=1

∑n
i,i′=1

∑n
j,j′ ̸=i,i′ wiswi′swjtwj′tGijGi′j′ ≤

β2
2

∑
s

∑n
i,i′=1wiswi′s = β2

2

∑
s n

2
s. By Assumption 4.2(vi) the latter is o ((

∑
s n

2
s)

2).
Observe too that

S∑
s,t=1

n∑
i,i′=1

n∑
j,j′ ̸=i,i′

wiswi′swjtwj′t|ψijt||ψi′j′t| =
S∑
s=1

n∑
i,i′=1

wiswi′s

(
S∑
t=1

[
n∑
j ̸=i

wjt|ψijt| ·
n∑

j′ ̸=i′
wj′t|ψi′j′t|

])
.

By the Cauchy-Schwarz inequality, we have

S∑
t=1

[
n∑
j ̸=i

wjt|ψijt| ·
n∑

j′ ̸=i′
wj′t|ψi′j′t|

]
≤

√√√√ S∑
t=1

(∑
j ̸=i

wjt|ψijt|

)2
√√√√ S∑

t=1

(∑
j′ ̸=i′

wj′t|ψi′j′t|

)2

= Ci,ψCi′,ψ,

where we have written each of the terms in square roots as

S∑
t=1

n∑
j ̸=i

n∑
k ̸=i

wjtwkt|ψijt||ψikt| ≤

(
S∑
t=1

n∑
j ̸=i

wjt|ψijt|

)
n∑
k ̸=i

max
t

|ψikt|

=

(
n∑
j ̸=i

max
t

|ψijt|

)2

≡ C2
i,ψ.
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If we combine the above lines we can write

S∑
s,t=1

n∑
i,i′=1

n∑
j,j′ ̸=i,i′

wiswi′swjtwj′t|ψijt||ψi′j′t| ≤
S∑
s=1

n∑
i,i′=1

wiswi′sCi,ψCi′,ψ ≤
n∑

i,i′=1

Ci,ψCi′,ψ

=

(
n∑
i=1

Ci,ψ

)2

= o(n2).

Turning to the cross-terms we get

S∑
s,t=1

n∑
i,i′=1

n∑
j,j′ ̸=i,i′

wiswi′swjtwj′t|ψijtβ2Gi′j′ | ≤
S∑

s,t=1

(
n∑

i,i′=1

n∑
j ̸=i

wiswi′swjt|ψijtβ2|

)

= |β(S)
2 |

S∑
s=1

n∑
i,i′=1

wiswi′s

(
S∑
t=1

n∑
j ̸=i

wjt|ψijt|

)

≤ |β(S)
2 |

S∑
s=1

n∑
i=1

Ci,ψwisns

≤ Cβ max
s
ns

n∑
i=1

Ci,ψ

= o(n2).

We conclude that var
(∑

s<t

(∑n
i=1wis

∑n
j ̸=iwjt(ψijt − β2Gij)

)
XsXt F

)
= o(n2)

which in turn concludes the proof that n−1X ′ε− E[n−1X ′ε|F] = n−1X ′ε→p 0.

Consider the term Z ′
nε:

Z ′
nε =

S∑
s=1

(
n∑
i=1

n∑
j ̸=i

GijwjsYi(0)

)
Xs +

∑
s,t

(
n∑
i=1

n∑
j ̸=i

Gijwjswit(ψit − β1)

)
XsXt

+
∑
s,t

(
n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

Gijwjswkt(ψikt − β2Gik)

)
XsXt.

(30)
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The variance of the first term of (30) is

var

(
S∑
s=1

(
n∑
i=1

n∑
j ̸=i

GijwjsYi(0)

)
Xs F

)
⪯
∑
s

(
n∑

i,i′=1

n∑
j,j′ ̸=i,i′

GijGi′j′wjswj′sYi(0)Yi′(0)

)

≤ C2
y

∑
s

(
n∑
i=1

n∑
j ̸=i

Gijwjs

)2

= o(n2),

so that the normalized term converges to zero, its mean. We can write the next
term of (30) as a sum of three terms: (i)

∑
s

(∑n
i=1

∑n
j ̸=iGijwjswis(ψis − β1)

)
X2
s ,

(ii)
∑

s<t

(∑n
i=1

∑n
j ̸=iGijwjswit(ψit − β1)

)
XsXt, (iii)

∑
s<t

(∑n
i=1

∑n
j ̸=iGijwjtwis(ψis − β1)

)
XsXt

with the second and third term being identical in their proofs. We can show using
arguments similar to those above and using Assumption 4.2(ii) that, when nor-
malized by n, the demeaned first term, as well as each of the second and third
converges in probability to zero.
We can write the third term of (30) as the sum of (i)

∑
s

(∑n
i=1

∑n
j ̸=i
∑n

k ̸=iGijwjswks(ψiks − β2Gik)
)
X2
s ,

(ii)
∑

s<t

(∑n
i=1

∑n
j ̸=i
∑n

k ̸=iGijwjswkt(ψikt − β2Gik)
)
XsXt, (iii)

∑
s<t

(∑n
i=1

∑n
j ̸=i
∑n

k ̸=iGijwjtwks(ψiks − β2Gik)
)
XsXt

with the second and third having identical arguments. Using von Bahr-Esseen, we
can show that (i) can be bounded above byC1+η

ψ,2 (maxs ns)
1+η
∑

s(
∑n

i=1

∑
j ̸=iGijwjs)

1+η =

o(n1+η) when lim supS→∞ maxs ns < ∞. We can also show that the variance of (ii)

can be bounded above by
(∑n

i=1

∑n
k ̸=imaxt(ψikt − β2Gik)

)2
= o(n2) by Assump-

tion 4.2(iv). We conclude that n−1Z ′
nε→p 0.

A.4 Central limit theorem

Let rS = n(S)−1. We have r1/2S (W ′W )(β̂ − β(S)) = r
1/2
S W ′εn and apply the Lin-

deberg Central Limit Theorem to the right-hand side term. We first define as ≡∑n
i=1wisYi(0), bst ≡

∑n
i=1wiswit(ψit − β1), cst ≡

∑n
i=1

∑n
j ̸=iwiswjt(ψijt − β2Gij). Ig-

noring dependence of the variances on the conditioning set, let σ2
s = var(Xs|Fn).
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We can write

X ′εn =
S∑
s=1

(
asXs + bss(X

2
s − σ2

s) +
∑
t̸=s

bstXsXt + css(X
2
s − σ2

s) +
∑
t̸=s

cstXsXt

)

=
S∑
s=1

(
asXs + (bss + css)(X

2
s − σ2

s) +
s−1∑
t=1

(bst + bts + cst + cts)XsXt

)

=
S∑
s=1

X̃1,s,

where
∑

s(bssσ
2
s + cssσ

2
s) = 0 because E[X ′εn|Fn] = 0. Notice that the s-th term of

the sum is a measurable functions f(X1, ...,Xs) so it follows that {X̃s}Ss=1 is a mar-
tingale difference array with filtration F̃s = σ(F,X1, ....,Xs). I.e. E[X̃1,s|F̃s−1,n] =

0. It also follows that unconditionally E[X̃1,sX̃1,t|Fn] = 0.
Next, define ās ≡

∑n
i=1

∑n
j ̸=iGijwjsYi(0), b̄st ≡

∑n
i=1

∑n
j ̸=iGijwjswit(ψit − β1), and

finally c̄st ≡
∑n

i=1

∑n
j ̸=i
∑n

k ̸=iGijwjswkt(ψikt−β2Gik). Using the same arguments as
above, we can writeZ ′

nεn =
∑S

s=1 X̃2,s. Therefore, we have r1/2s W ′
nεn = r

1/2
S

∑S
s=1 X̃s

where X̃s is a 2 × 1 vector martingale difference array. Using the results in Alj,
Azrak, and Mélard 2014 together with the Cramer-Wold Device, we can check
whether Lyapunov’s condition is satisfied and a central limit theorem holds. That
is, we verify whether the following two requirements are satisfied:
(i) limS→∞ r

1+η/2
S

∑S
s=1 E[|t′X̃s|2+η|Fn] = 0 for all t ∈ R2, (ii) rS

∑S
s=1 var(t′X̃s|Fn)−

rS
∑S

s=1 var(t′X̃s|F̃s−1,n) → 0.
(i) We need to show that r1+η/2S

∑
s E[|t1X̃1,s|2+η|F] → 0 and r1+η/2S

∑
s E[|t2X̃2,s|2+η|F] →

0. This follows from using Minkowski’s inequality for the s-th term of the sum
followed by the cr-inequality. Consider the first. We will use the cr-inequality to
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bound E[|X̃1,s|2+η|F]. Let’s consider the term

r
1+η/2
S

∑
s

E[|
s−1∑
t=1

cstXsXt|2+η|F] = r
1+η/2
S

∑
s

E

∣∣∣∣∣
s−1∑
t=1

(
n∑
i=1

n∑
j ̸=i

wiswjt(ψijt − β2Gij)XsXt

)∣∣∣∣∣
2+η

F


⪯ r

1+η/2
S

∑
s

E

∣∣∣∣∣
s−1∑
t=1

(
n∑
i=1

n∑
j ̸=i

wiswjt(ψijt − β2Gij)Xt

)∣∣∣∣∣
2+η

F


≤ r

1+η/2
S

∑
s

E

( n∑
i=1

wis

n∑
j ̸=i

max
t≤S

|ψijt − β2Gij|
s−1∑
t=1

wjt|Xt|

)2+η

F


≤ r

1+η/2
S

∑
s

E

( s−1∑
t=1

αs,t

)2+η( s−1∑
t=1

αs,t|Xt|

)2+η

F


≤ r

1+η/2
S

∑
s

(
s−1∑
t=1

αs,t

)2+η s−1∑
t=1

αs,tE
[
|Xt|2+η|F

]
⪯ r

1+η/2
S

∑
s

(
s−1∑
t=1

αs,t

)2+η

≤
S∑
s=1

(
n−1/2

n∑
i=1

wis

n∑
j ̸=i

max
t≤S

|ψijt − β2Gij|

)2+η

,

where αs,t ≡
∑n

i=1wis
∑n

j ̸=iMijwjt with Mij the maximum misspecification error
between i and j and the fifth line uses Jensen’s inequality pointwise. Assumption
4.3(ii) implies that the terms inside the parentheses converge to zero as S → ∞
and to prove that the sequence of partial sums converges to zero as S → ∞, we
make use of the fact that it converges to zero for η = 0, so must also converge for
η > 0.
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Next, consider

S∑
s=1

E

∣∣∣∣∣r1/2S

∑
t̸=s

bstXsXt

∣∣∣∣∣
2+η

F

 =
S∑
s=1

E

∣∣∣∣∣r1/2S

s−1∑
t=1

(
n∑
i=1

wiswit(ψit − β
(S)
1 )

)
XsXt

∣∣∣∣∣
2+η

F


⪯ r

1+η/2
S

S∑
s=1

E

( s−1∑
t=1

αst|Xt|

)2+η

F


⪯ r

1+η/2
S

S∑
s=1

(
s−1∑
t=1

αst

)2+η

⪯ r
1+η/2
S

S∑
s=1

(
s−1∑
t=1

n∑
i=1

wiswit

)2+η

≤
(maxs≤S ns

n1/2

)η
n−1

S∑
s=1

n2
s

= o(1),

where αst ≡
∑n

i=1wiswit|ψit − β1| and we again apply Jensen’s inequality point-
wise as well bounded misspecification |ψit − β1|. The final line then makes use of
eventually bounded maximum sector size.
Consider the term

S∑
s=1

E[|r1/2S asXs|2+η|F] =
S∑
s=1

E

∣∣∣∣∣r1/2S

(
n∑
i=1

wisYi(0)

)
Xs

∣∣∣∣∣
2+η

F


⪯

S∑
s=1

E
[
|r1/2S nsXs|2+η F

]
⪯ n−(1+η/2)

S∑
s=1

n2
sn

η
s

= o(1).

[The terms
∑

s(bss + css)(X
2
s − σ2

s) and
∑s−1

t=1(bts + cts)XsXt should follow similar
arguments to ones above.]
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We now make the arguments for r1+η/2S

∑
s E[|X̃2,s|2+η|F] → 0. We will again

bound the terms above using the cr-inequality and consider each term separately
converges to zero. Let’s consider the term

S∑
s=1

E

∣∣∣∣∣r1/2S

s−1∑
t=1

c̄stXsXt

∣∣∣∣∣
2+η

F

 =
S∑
s=1

E

∣∣∣∣∣r1/2S

∑
t̸=s

(
n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

Gijwjswkt(ψikt − β
(S)
2 Gik)

)
XsXt

∣∣∣∣∣
2+η

F


⪯ r

1/2
S

S∑
s=1

(
s−1∑
t=1

αst

)2+η

≤
S∑
s=1

(
n−1/2

n∑
i=1

n∑
j ̸=i

n∑
k ̸=i

GijwjsMik

)2+η

= o(1),

where the final line uses that the statement holds for η = 0 together with Assump-
tion 4.4(i) to restrict the rate of growth of the total misspecification error, so must
hold for η > 0.
Let’s consider the term

S∑
s=1

E

∣∣∣∣∣r1/2S

∑
t̸=s

b̄stXsXt

∣∣∣∣∣
2+η

F

 =
S∑
s=1

E

∣∣∣∣∣r1/2S

s−1∑
t=1

(
n∑
i=1

n∑
j ̸=i

Gijwjswit(ψit − β
(S)
1 )

)
XsXt

∣∣∣∣∣
2+η

F


⪯ r

1+η/2
S

S∑
s=1

(
s−1∑
t=1

n∑
i=1

n∑
j ̸=i

Gijwjswit|ψit − β
(S)
1 |

)2+η

⪯
S∑
s=1

(
n−1/2

n∑
i=1

n∑
j ̸=i

Gijwjs

)2+η

= o(1),
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where the final line uses Assumption 4.3(iii). Finally consider the term

S∑
s=1

E[|r1/2S āsXs|2+η|F] =
S∑
s=1

E

∣∣∣∣∣r1/2S

(
n∑
i=1

n∑
j ̸=i

GijwjsYi(0)

)
Xs

∣∣∣∣∣
2+η

F


⪯

S∑
s=1

(
n−1/2

n∑
i=1

n∑
j ̸=i

Gijwjs

)2+η

= o(1).

[The terms
∑

s b̄ss(X
2
s−σ2

s) and
∑

s c̄ss(X
2
s−σ2

s) should follow similar arguments to
ones above.] This completes the proof of Lyapunov’s condition r1+η/2S

∑S
s=1 E[|t′X̃s|2+η|Fn] →

0 as S → ∞ for any real vector t ∈ R2.
We now need to obtain conditions under which the conditional variance con-
verges. Define Vn(t) := var

(
r
1/2
S t′W ′εn|F

)
= var(r1/2S

∑S
s=1 t

′X̃s|Fn). Then

rS
∑S

s=1 var(t′X̃s|F̃s−1)− Vn(t) = rSt
′∑S

s=1(E[X̃sX̃
′
s|F̃s−1]− E[X̃sX̃

′
s|F])t with

var(X̃s|F) =

(
E[X̃2

1,s|F] E[X̃1,sX̃2,s|F]

E[X̃1,sX̃2,s|F] E[X̃2
2,s|F]

)
.

Since for any symmetric matrix A, |t′At| ≤ ||A||t′t where ||A|| is either the spectral
or Frobenius matrix norm. It is sufficient to show that each element ofA converges
to zero.
For ease of reading, we drop the conditioning notation when referring to the ‘un-
conditional’ expectation that conditions only on F. Consider the term

rS

S∑
s=1

E[X̃2
1,s|Fs−1]− E[X̃2

1,s] =2rS

S∑
s=2

(
σ2
sa

2
s + E[X̃3

s ](bss + css)
) s−1∑
t=1

(bst + bts + cst + cts)Xt

+ rS

S∑
s=2

σ2
s

s−1∑
t=1

(bst + bts + cst + cts)
2(X2

t − σ2
t )

+ rS

S∑
s=2

σ2
s

s−1∑
t̸=u

(bst + bts + cst + cts)(bsu + bus + csu + cus)XtXu.
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Notice that the s-th term is zero when we take the expectation with respect to
Fs−1. Call the three terms above 2D1 + D2 + D3. Since E[Dj] = 0, we will prove
that var(Dj) → 0. Observe that we can we can rewrite D1 as

D1 = rS

S−1∑
t=1

(
S∑

s=t+1

(σ2
sa

2
s + E[X̃3

s ](bss + css))(bst + bts + cst + cts)

)
Xt,

so that

var(D1) = n−2

S−1∑
t=1

σ2
t

[
S∑

s=t+1

(σ2
sa

2
s + E[X̃3

s ](bss + css))(bst + bts + cst + cts)

]2

⪯ n−2

S−1∑
t=1

σ2
t

S∑
s=t+1

S∑
s′=t+1

E[X3
s ]

2(bss + css)(cst + cts)(bs′s′ + cs′s′)(cs′t + cts′),

where the second line uses the fact that the order of the variance is determined by
the dominant term (bss+css)(cst+cts). We have |bss+css| ⪯ ns+

∑n
i=1

∑n
j ̸=iwiswjs|ψijs−

β2Gij| while |cst + cts| ⪯
∑n

i=1

∑n
j ̸=iwiswjt|ψijt − β2Gij|. It follows that

var(D1) ⪯n−2

S−1∑
t=1

S∑
s=1

S∑
s′=1

(
n∑
i=1

n∑
j ̸=i

wiswjs|ψijs − β2Gij|

)(
n∑
i=1

n∑
j ̸=i

wis′wjs′ |ψijs′ − β2Gij|

)

·

(
n∑
i=1

n∑
j ̸=i

wiswjt|ψijt − β2Gij|

)(
n∑
i=1

n∑
j ̸=i

wis′wjt|ψijt − β2Gij|

)

≤

(
n−1/2

n∑
i=1

n∑
j ̸=i

max
s≤S

|ψijs − β2Gij|

)4

→ 0

by Assumption 4.4.
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Consider the term D3, which can be rewritten as

D3 = rS

S∑
s=2

σ2
s

s−1∑
t̸=u

(bst + bts + cst + cts)(bsu + bus + csu + cus)XuXt

= rS

S∑
s=3

σ2
s

s−1∑
t=2

t−1∑
u=1

2(bst + bts + cst + cts)(bsu + bus + csu + cus)XuXt

= 2rS

S−1∑
t=2

t−1∑
u=1

S∑
s=u+2

σ2
s(bst + bts + cst + cts)(bsu + bus + csu + cus)XuXt,

which has variance

var (D3) = 4n−2

S−1∑
t=1

t−1∑
u=1

(
S∑

s=u+2

σ2
s(bst + bts + cst + cts)(bsu + bus + csu + cus)

)2

σ2
uσ

2
t

⪯ n−2

S−1∑
t=1

t−1∑
u=1

S∑
s=u+2

S∑
s′=u+2

(cst + cts)(csu + cus)(cs′t + ct′s)(cs′u + cu′s)

⪯ n−2

S−1∑
t=1

t−1∑
u=1

S∑
s=u+2

S∑
s′=u+2

(
n∑
i=1

n∑
j ̸=i

wiswitMij

)(
n∑
i=1

n∑
j ̸=i

wiswiuMij

)(
n∑
i=1

n∑
j ̸=i

wis′witMij

)(
n∑
i=1

n∑
j ̸=i

wis′wiuMij

)

≤

(
n−1/2

n∑
i=1

n∑
j ̸=i

Mij

)4

→ 0.

Finally, the term D2 is

D2 = rS

S−1∑
t=1

S∑
s=t+1

σ2
s(bst + bts + cst + cts)

2(X2
t − σ2

t ).

The arguments follow similarly to D3. We therefore conclude that the (1, 1) entry
of rSt′

∑S
s=1(E[X̃sX̃

′
s|F̃s−1]− E[X̃sX̃

′
s|F])t converges to zero for every value of t ∈

R2. We next consider the (2, 2) entry.

Assumption A.1. For n = n(S), as ≡
∑n

i=1wisYi(0), and bst ≡
∑n

i=1wiswit(ψit −

β1), limS→∞ n−1
∑S

s=1 E
[(
asXs + bss(Xs − σ2

s) +
∑

t̸=s bstXsXt

)2
Fn

]
converges to
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a positive value, V1.
For ās ≡

∑n
i=1

∑n
j ̸=iGijwjsYi(0), b̄st ≡

∑n
i=1

∑n
j ̸=iGijwjswit(ψit − β1), and c̄st ≡∑n

i=1

∑n
j ̸=i
∑n

k ̸=iGijwjswkt(ψikt − β2Gik). Then

limS→∞ n−1
∑S

s=1 E
[(
āsXs + b̄ss(Xs − σ2

s) +
∑

t̸=s b̄stXsXt

)2
+ 2āsc̄ss(X

2
s − σ2

s)Xs F

]
converges to a positive value V2.

Proposition A.2. Under Assumptions 4.2, 4.4, and Assumption A.1, n−1
∑S

s=1 E[X̃2
1,s|Fn] →

V1 and n−1
∑S

s=1 E[X̃2
2,s|F] → V2.

Proof. Recall that X̃1,s = asXs + bss(X
2
s − σ2

s) +
∑

t̸=s bstXsXt + css(X
2
s − σ2

s) +∑
t̸=s cstXsXt. We can show that

E[X̃2
1,s|Fn] = a2sE[X2

s |Fn] + 2as(bss + css)E[(X2
s − σ2

s)Xs|Fn]

+ (b2ss + 2bsscss + c2ss)E[(X2
s − σ2

s)
2|Fn]

+
∑
t̸=s

(b2st + 2bstcst + c2st)E[X2
s |Fn]E[X2

t |Fn].

Consider the term

n−1

S∑
s=1

a2sE[X2
s |F] ⪯ n−1

S∑
s=1

(
n∑
i=1

wisYi(0)

)2

≤ C2
yn

−1

S∑
s=1

n2
s = O(1).
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Next,

n−1

S∑
s=1

2as(bss + css)E[(X2
s − σ2

s)Xs|F] ⪯ n−1

S∑
s=1

(
n∑
i=1

wisYi(0)

)
(
n∑
i=1

w2
is(ψis − β1)

+
n∑
i=1

n∑
j ̸=i

wiswjs(ψijs − β2Gij))

⪯ n−1

S∑
s=1

ns

(
n∑
i=1

w2
is +

n∑
i=1

n∑
j ̸=i

wiswjsmax
s≤S

|ψijs − β2Gij|

)

≤ n−1

S∑
s=1

n2
s + n−1

n∑
i=1

n∑
j ̸=i

max
s≤S

|ψijs − β2Gij|

= O(1) + o(1).

The last line implies that n−1
∑S

s=1 2ascssE[(X2
s − σ2

s)Xs|F] = o(1).
Next, consider the term

n−1

S∑
s=1

(bss + css)
2E[(X2

s − σ2
s)

2] ⪯ n−1

S∑
s=1

(
n∑
i=1

w2
is(ψis − β1) +

n∑
i=1

n∑
j ̸=i

wiswjs(ψijs − β2Gij)

)

≤ C2
ψ,1n

−1

S∑
s=1

n2
s +

(
n−1

n∑
i=1

n∑
j ̸=i

max
s≤S

|ψijs − β2Gij|

)2

,

where the second term converges to zero. Next, we can show that n−1
∑S

s=1

∑
t̸=s b

2
st ⪯

n−1
∑S

s=1 n
2
s, n−1

∑S
s=1

∑
t̸=s bstcst = o(1) under the assumption lim supmaxs ns <

∞ and total misspecification error being order smaller than n. Finally, n−1
∑S

s=1

∑
t̸=s c

2
st =

o(1) under Assumption 4.4(i). We conclude that n−1
∑S

s=1

∑
t̸=s(b

2
st + 2bstcst +
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c2st)E[(XtXs)|F] = O(1). This leaves us with

lim
S→∞

n−1

S∑
s=1

E
[
X̃2

1,s F
]
= lim

S→∞

(
n−1

S∑
s=1

a2sE[X2
s |F] + n−1

S∑
s=1

2assbssE[(X2
s − σ2

s)Xs|F]

+ n−1

S∑
s=1

b2ssE[(X2
s − σ2

s)
2|F]

+ n−1

S∑
s=1

∑
t̸=s

b2stE[(XsXt)
2|F]

)
.

Arguments for n−1
∑S

s=1 E[X̃2
2,s|F] follow similar arguments.

B Consistency with control variables

This section can help us learn how to deal with control variables, {Vi}ni=1, should
random assignment hold conditional on V . Such controls will be included in the
set characterising our sample, F. Define the projection models Xi = Zniδ + Ẍni

and Zni = Xiγ+ Z̈ni. Let X̃n = X−Znδ̂ = (In−HZ)X where HZ = Zn(Z
′
nZn)

−1Z ′
n.

The OLS estimator of β1 is

β̂1 =
X̃ ′
nY

X̃ ′
nX̃n

= β1 +
X̃ ′
n(Y − X̃nβ1)

X̃ ′
nX̃n

= β1 +
Ẍ ′
nε− (δ̂ − δ)Z

′
nε

(Ẍn − Zn(δ̂ − δ))′(Ẍn − Zn(δ̂ − δ))

(31)
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where the final equality uses the fact that (In − HZ)(Y − X̃nβ1) = (In − HZ)ε.
Similarly,

β̂2 =
Z̃ ′
nY

Z̃ ′
nZ̃n

= β2 +
Z̈ ′
nε− (γ̂ − γ)X ′ε

(Z̈n −X(γ̂ − γ))′(Z̈n −X(γ̂ − γ))
.

(32)

Consider the projection models Xi = Zniδ + Ẍni and Zni = Xiγ + Z̈ni. We can
write δ̂ − δ = (Z ′

nZn)
−1Z ′

nẌn and γ̂ − γ = (X ′X)−1X ′Z̈n.

Proposition B.1. Under Assumption 4.1, (i) δ̂ − δ = op(1) and (ii) γ̂ − γ = op(1).

Proof of Proposition B.1. We want to show that n−1Z ′
nẌ →p 0. We have n−1Z ′

nẌ =

n−1Z ′
nX − δn−1Z ′

nZn together with Assumption 4.1

n−1Z ′
nẌ = n−1Z ′

nX − E
[
n−1Z ′

nX F
](

1 +
n−1Z ′

nZn − E[n−1Z ′
nZn|F]

n−1E[Z ′
nZn|F]

)
= n−1Z ′

nX − E
[
n−1Z ′

nX F
](

1 +
op(1)

QZ + o(1)

)
= op(1)

to conclude δ̂ − δ = op(1).
Next, consider the estimand γ(n) = E[X ′Zn|F]/E[X ′X|F]. Focusing on the de-
nominator we have E[X ′X|F] =

∑
s(
∑

iw
2
is)E[X

2
s |F] = O(

∑
s ns). We have al-

ready found that the numerator is O(
∑

s n
2
s) so under Assumption 4.1(iv) and (v)

we conclude that γ(n) = O(1). We can write n−1X ′Z̈n = n−1X ′Zn − n−1γX ′X :

n−1X ′Zn − n−1E[X ′Zn|F]

(
1 +

n−1X ′X − n−1E[X ′X|F]

n−1E[X ′X|F]

)
.

The numerator equals n−1
∑

s (
∑n

i w
2
is) (X

2
s−var(Xs|F))+2n−1

∑
s<t (

∑n
i=1wiswit)XsXt

where both terms converge in probability to zero. Finally, using that n−1
∑n

i=1 ZniXi−
E[n−1

∑n
i=1 ZniXi|F] = op(1), we can conclude that γ̂−γ = (n−1X ′X)−1n−1X ′Z̈n =

op(1).
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